
Fast 3D surface reconstruction from point clouds
using graph-based fronts propagation

Abdallah El Chakik, Xavier Desquesnes, Abderrahim Elmoataz

UCBN, GREYC - UMR CNRS 6972, 6.Bvd Marechal Juin, 14050 Caen, FRANCE

Abstract. This paper proposes a surface reconstruction approach that
is based on fronts propagation over weighted graphs of arbitrary struc-
ture. The problem of surface reconstruction from a set of points has
been extensively studied in the literature so far. The novelty of this ap-
proach resides in the use of the eikonal equation using Partial difference
Equation on weighted graph. It produces a fast algorithm, which is the
main contribution of this study. It also presents several examples that
illustrate this approach.

1 Introduction

The main goal of this work is to propose a fast surface reconstruction method
from point clouds, using a graph-based representation. This reconstruction is
performed using a Partial difference Equation (PdEs) fronts propagation algo-
rithm based on weighted graph.

Brief Literature Overview. Surface reconstruction from point clouds is an
important problem in geometric modeling. Given a set of pointsX = {x1, x2, .., xn}
⊂ Rn sampled from some unknown surface S, the surface reconstruction prob-
lem is to construct a surface Ŝ from the observed data X such as Ŝ approximates
S.

Most surface representation techniques for point clouds reconstruction meth-
ods are classified into two categories, namely explicit and implicit methods. Ex-
plicit surface representations prescribe the surface location and geometry in an
explicit manner and are mainly based on Delaunay triangulations or dual Voronöı
diagrams. A popular technique is to construct a polyhedral surface from the in-
put set of points using the Voronöı diagram [8]. Implicit surface representations
embed surfaces as a co-dimension one level set of a scalar-valued function. In
[5], a variational level set method was proposed, it introduced a distance-based
energy functional, solved by level set method. Recently, this work was extended
in [6, 7]. In this paper, we focus on the level set transcription on weighted graph.

Level set method. The level set formulation to describe a curve evolution
has been introduced by Osher-Sethian [1], and is used in many works for 3D
surface reconstruction based on front propagation. In [4], Claisse and Frey solved
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the surface reconstruction problem using the following equation :

∂φ
∂t

(t, x) = |∇φ(t, x)|(βk(φ)(t, x) + (αd)(x)), (1)

where k(φ)(t, x)=∇.n(φ)(t, x)=
(
∇.(| ∇u

|∇u| )t(tx)
)

is the local mean curvature of

the surface considered, α and β ∈ R and d(x) is here the distance between x
and the initial point set in R3. An important drawback of the level set approach
stems from the expanse by embedding the front in Rd as the level set of d+1 di-
mensional function. Considerable computational labor is required per time step.

Contribution. We propose in this work a different and efficient approach
that reduces the computational time without loss of precision. Our contribution
is the transcription of the problem from R3 to a weighted graph. Indeed, any
set of discrete data can be modeled as a weighted graph G = (V,E,w) where
V is the set of vertices that represents the data, E is the set of weighted edges
and w is a weight function that represents the interactions between the data (see
Section 2 for more details). We demonstrate that the graph representation allows
to significantly reduce the amount of space points to be treated by the differ-
ent surface reconstruction algorithms, thus increasing their performance. Then
we extend the previously introduced PdE based fronts propagation method on
weighted graphs in [3] to the 3D surface reconstruction problem. This method is
based on the resolution of the following equation : F(u)‖(∇−wT )(u)‖p = 1, where
∇−w is an upwind discrete weighted gradient on a graph, T is the arrival time
function of the fronts and F is the propagation speed function.

Paper organization. The rest of this paper is organized as follows. Section
2 presents a general definition of Partial difference Equations on weighted graph.
It also describes our fronts propagation method on weighted graphs. Section 3
presents our graph-based surface reconstruction method. Section 4 presents some
experiments. Finally, Section 5 concludes this paper.

2 Partial Difference Equations on Weighted Graphs

We begin briefly by reviewing some basic definitions and operators on weighted
graphs.

Notions and Definitions. We assume that any discrete domain can be
modeled by a weighted graph. Let G = (V,E,w) be a weighted graph composed
of two finite sets : V = {u1, ...., un} of n vertices and E ⊂ V ×V a set of weighted
edges. An edge (u, v) ∈ E connects two adjacent vertices u and v. The weight
wuv of an edge (u, v) can be defined by a function w : V ×V → R+ if (u, v) ∈ E,
and wuv = 0 otherwise. We denote by N(u) the neighbor of a vertex u, i.e. the
subset of vertices that share an edge with u.
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Let f : V → R be a discrete real-valued function that assigns a real value
f(u) to each vertex u ∈ V. We denote by H (V) the Hilbert space of such func-
tions.

Operators on Weighted Graphs. For a better comprehension of the next
Section, we now quickly recall some operators on weighted graphs as they are
defined in [3, 14]. Considering a weighted graph G = (V,E,w) and a function
f ∈H (V), the weighted discrete partial derivative operator of f is :

(∂vf)(u) =
√
wuv(f(v)− f(u)) (2)

Based on this definition, two weighted directional difference operators are
defined. The weighted directional external and internal difference operators are
respectively :

(∂+v f)(u) =
√
wuv(f(v)− f(u))+and

(∂−v f)(u) =
√
wuv(f(v)− f(u))−

(3)

with (x)+ = max(0, x) and (x)− = −min(0, x).
The weighted gradient of a function f ∈ H (V) at vertex u is the vector of all
edge directional derivatives :

(∇wf)(u) = (∂vf(u))Tv∈V (4)

And the weighted morphological external and internal gradient (∇+
wf)(u) and

(∇−wf)(u) are :

(∇±wf)(u) =
((
∂±v f

)(
u
))T
v∈V . (5)

2.1 Front Propagation on weighted graphs

In this section we will present the fronts propagation approach on weighted
graphs.

Let G = (V,E,w) be a weighted graph. A front evolving on G is defined
at initial time as a subset Ω0 ⊂ V , and is implicitly represented by a level set
function φ0 such that φ0 equals 1 in Ω0 and −1 on its complementary.
Then, the front propagation is described by the following equation{

∂φ
∂t (u) = (F(u)‖(∇wφ)(u)‖
φ0(u) = φ0

(6)

with F ∈ H (V), and w : V × V → R+ is the weighted function. Only con-
sidering the case F ≥ 0, and with φ(u, t) = t − T (u), The authors have shown
in [3] that previous equation can be rewritten as

∂φ(u, t)

∂t
= F(u)‖(∇+

w(t− T ))(u)‖p

= F(u)‖(∇−wT )(u)‖p = 1,

‖(∇−wT )(u)‖p = P (u)

(7)
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where P (u) = 1/F(u).

This equation is the stationary version of the level set equation (6) that cor-
responds to the well-known eikonal equation and T : V → R is the arrival-time
function that associates the arrival time of Γ to each vertices of V . This function
can also be considered as a distance function that provides the distance between
each vertex u and Ω0.

In [3], the authors have proposed several numerical schemes to solve such
equations for different Lp norms. They also presented an efficient algorithm
inspired from Fast Marching that allows to compute the propagation and the
arrival time of many fronts evolving on a graph. In this case, equation (7) is
associated with a label function that mark each vertex u with the label of the
first front that reach u. The label function L : V → [0,K] is initialized as

L(u) =

{
i ∈ [1,K] if u belongs to front i at initial time

0 otherwise
(8)

where K is the number of fronts. Interested readers should refers to [2, 3] for
more details. Such algorithm has been successfully used for geodesic distance
computation on weighted graphs, image segmentation and data clustering. In
the next section, we will propose a new surface reconstruction method based on
this algorithm.

3 Method

Our reconstruction method consists of completing the initial point clouds with a
very dense set of points that will be part of the resulting reconstructed surface.
The completion is performed by selecting new points from a very dense set of
candidate points, generated in the neighborhood of initial points, and including
initial points. Our approach considers the set of candidate points as a weighted
graph (constructed from the set) and the surface to be reconstructed as a subset
of the vertices of this graph. Working on this graph, and by analogy with the
level set method, the surface to be reconstructed is considered as the interface
between two inner and outer fronts evolving on the whole graph. These two
fronts are driven according to a potential field that controls their propagation
speed, and defined on the graph vertices such that the two fronts collapse on the
object boundary.

Graph construction. The first step extends the initial point clouds in order
to generate candidate points and constructs the associated weighted graph. In
order to precisely fill in the holes of the object, we need a very dense additional
point clouds in the neighborhood of the initial points. But high density point
clouds penalizes the computational efficiency due to the high number of can-
didates to be treated. For this reason, we propose to use an adaptive approach



Fast 3D surface reconstruction using graph-based fronts propagation 5

that allows to add a very dense additional points only where it is necessary (near
the initial points), and very sparse additional points elsewhere.

We consider the initial point clouds to be represented by a set of points
X = {x1, x2, ..., xn} ⊂ Rn. This initial point clouds X is extended with new
points as follows : Let C be the candidate points that are regularly added to the
neighborhood of the initial points, such that the density of the new points is very
high near the initial points and decreases as we move away. This is performed by
the adaptive triangulation method proposed by [4] that produces a triangulated
adapted mesh which vertices include initial and candidates points. Let X ′ be
the joint set of initial and candidate points (X ′ = X ∪ C).

We denote G(V,E,w) the weighted graph constructed from the previously
obtained mesh. The set of vertices V represent the points of X ′, such that the
vertex vi ∈ V represents the point x′i ∈ X ′. Let V0 be the set of vertices that
corresponds to the initial points (X). The set of edges E is given by the trian-
gulated mesh edges. The weight function w defines a similarity between the two
vertices of each edge. This similarity is based on the position in space of the
associated points, we have w(vi, vj) = −exp(d(x′i, x

′
j)

2/σ2)∀(vi, vj) ∈ E. With
this definition, the weight function holds the spatial relations of the extended
point clouds X ′.

We will now present the fronts initialization and the potential field definition,
both based on the same distance map D computed from initial point clouds. This
distance is computed as follows.

Distance Map. The distance map is a function D : V → R+ that associates
each vertex u of G with the distance between the set V0 and u.

The distance map is computed using the Fast Marching algorithm on graphs
(7)(see Sec.2), for a single front initialized on initial points (i.e., Ω0 = V0), and
with constant potential function (P = 1).

We recall that this algorithm produces both a label function (L) for fronts
propagation and the associated arrival-time function T that can be considered
as a distance map between Ω0 and each vertex u ∈ V . In this case, function T
provides distance from the single set V0 and we have D = T .

Inner and outer fronts initialization. Inner and outer fronts are ini-
tialized equidistantly from the initial point clouds, using the previous distance
function D. The inner front Γi is initialized by the subset Ωi0 of vertices that
lies inside the object and at a distance k from the initial points. We have
Ωi0 = {u | D = k ± ε and u inside}. Similarly, the outer front Γo is initial-
ized by the subset Ωo0 of vertices that lies outside the object and at a distance k
from the initial points. We have Ωo0 = {u | D = k ± ε and u outside}.

In the case where the fronts are not equidistant, the nearest front from the
surface to be reconstructed will always be favored and fronts may collapse far
from the object surface.
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Potential field. In the case where the object has thin parts, the inner front
will be favored and the fronts will collapse outside the object. To prevent this
problem, we introduce a potential field that controls the fronts propagation such
that the fronts moves very slowly near the initial points (near the object bound-
ary) and move faster elsewhere. The better potential function is given by the
distance map function D. Indeed the distance map is almost null near initial
points which guarantees that the fronts will be slowly propagated or stopped
near the surface to be reconstructed. Then the potential function is defined as
P = D.

Surface reconstruction. Once the inner and outer fronts are initialized,
we set a label to each graph vertices as follows : the vertices belonging to Ωi0 are
labeled by 1 ( L = 1) and the vertices belonging to Ωo0 are labeled by 2 (L = 2)
and the rest of vertices are labeled by 0 (L = 0).

Then we propagate those labels on the graph using the Fast Marching al-
gorithm on graphs (7) presented in Sec.2. The algorithm is initialized as Ω0 =
Ωi0 ∪Ωo0 , and the potential function is given by P = D.

Due to the potential field that slows down the fronts on the neighborhood of
the object boundary, both fronts collapse on this boundary. Then, the vertices
that lies inside the object are labeled by 1 and the vertices that lies outside the
object are labeled by 2 and the resulting reconstructed surface is the vertices
belonging to the inner labels and have at least one neighborhood belonging to
the outer labels.

Remark. We can apply a spacial regularization on the selected vertices to
adjust the vertices positions to top-up the resulting surface smoothness.

Complexity. If the graph is totally connected, the complexity of the pro-
posed model is O(N3), where N is the number of nodes in the graph.

4 Experiments

This section demonstrate the speed and the robustness of our surface recon-
struction approach by applying it on different examples. First, we explain our
approach on a 2D points set for better comprehension, we show our approach
results on 3D points set and we compare our approach results with some other
approaches.
Figure 1 shows the initial 2D points and the adapted mesh created. The initial
points number is 790 points, the adapted mesh produce 15451 points and 30868
triangles. The adapted mesh will be transformed into a weighted graph. We de-
fine a single label on the initial vertices (vertices to be reconstructed) that will
propagate on the whole graph and compute the distance map of each point to
the nearest initial points using the equation (7), figure 2 shows the distance map
computed.
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Fig. 1. The adapted mesh. Left : initial points; Right : the adapted mesh, this mesh
contain 15451 points and 30868 triangles.

Fig. 2. Distance map computed by propagating a single front from the initial points on
the whole graph. The colors represent each point distance value from the intial points.
The initial points distance value is red.

Once our distance map is computed, we define inner and outer labels using
this distance map. Figure 3 shows the labels and the object reconstructed.
Figure 4 shows a cut of the face adapted mesh. One can see the high points

density near the initial points and the low points density moving away from the
initial points. The initial points number is 67206, the adaptive triangulation pro-
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Fig. 3. Left : the labeled mesh. We assign to each label a color, the red color represent
the vertices belonging to inner label (L = 1), The vertices colored by blue belonging to
the outer label (L = 2), The rest of vertices colored by black are labeled by 0 (L = 0)
and represent the propagation space of the inner and outer labels; Right : our approach
surface reconstruction result that produce 6421 connected vertices.

duces 952869 points. Figure 5 shows the results of our reconstruction approach,

Fig. 4. Left : initial face point clouds (venus) to be reconstructed that contain 67026
points; Right : a cut of the face adapted mesh, the full face adapted mesh contain
952869 points and 5147018 triangles.

one can see the reconstructed objects smoothness. The resulting reconstructed
object : face (points : 579992, triangles : 1063855), dragon ( points : 451275,
triangles :703488), duck ( points : 498779 , triangles : 836483 ).

We tested our approach on a voxels image example to prove that our ap-
proach deals with multiple data types.We show our approach result on the
Stanford dragon point clouds [15]. We transformed our point clouds to a vox-
els 3D image and constructed our weighted graph G(V,E,w) such that a single
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Fig. 5. Surface reconstruction result using our approach. First column : initial point
clouds; Second column : our approach surface reconstruction results. One can see that
the holes in the surface (for the duck example) are reconstructed.

vertex is associated with each point in R3. The weight function is constant (
w(u, v) = 1, ∀(u, v) ∈ E).
Figure 6 illustrate the result of our surface reconstruction approach on the 3D
voxels image (grid size : 240×169×107). The surface reconstruction algorithms
computational time is 65 seconds for this example. One can see the time com-
putational difference between this examples and the adapted meshes examples,
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Point Cloud Adapted points number Reconstruction time

cart 15451 1.50 seconds
duck 943137 38.38 seconds
Face 952869 38.98 seconds
Dragon 991583 39.8 seconds

Table 1. Our method time computational for different point clouds examples.

thanks to the adaptive triangulation thats minimize the weighted graph vertices
number.

Fig. 6. Surface reconstruction example on 3D voxels image ; Left to right : dragon initial
point clouds, cut of dragon voxels 3D image, distance map computed by propagation
a single front starting from the initial points and evolving on the whole graph, labels
definition (the blue color represent the inner labels and the green color represent the
outer labels and the the black color represent the space label propagation), the surface
reconstruction result of the dragon.

Comparison with some other approaches. Following the quantitative
information given in [9], we compare the performances of our reconstruction ap-
proach on the Stanford bunny point clouds [15] with different methods [10, 11,
12, 13], figure 7 shows our surface reconstruction result on this example. Ta-
ble 2 presents the difference between our approach and the other approaches.
In terms of computation time, our method is comparable to that of the MPU
method, which is one of the fastest geometrically-adaptive reconstruction meth-
ods according to [12]. The Power Crust method is about 10 times slower, and the
Poisson method is about 4 times slower than our approach. The FFT oppe et
al. and methods are about 2 time slower but the first suffers from large memory
and the second produce some holes in the final reconstructed object. In term
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of reconstruction quality, The method by Hoppe et al. and the Power Crust
method generate a smooth surface with some holes that are still visible, The
MPU method provide a smooth surface without holes, but with some artefacts.
The FFT, Poisson and our method accurately reconstruct the surface of the
bunny. In terms of peak memory usage, our approach have a reasonable memory
usage which corresponds to the amounts of the memory to store the dense graph
constructed from the adapted mesh.

Fig. 7. Our approach result on Stanford bunny example. Left : the bunny initial point
clouds; Light : our approach reconstruction result.

Method Time Peak memory Triangles

Power Crust 504 2601 1,610,433
Poisson method 188 283 783,127
FFT method 93 1700 1,458,356
Hoppe et al. 82 230 630,345
MPU 78 421 2,121,041
Our method 45 980 2,759,146

Table 2. Different methods Computational time for the Stanford bunny. Computa-
tional time (seconds), peak-memory usage (mega-bytes) and number of triangles of the
reconstructed surfaces of three range data sets.

Advantages. This method offers several advantages. First of all, for adapted
meshes, the graph representation allows to have very dense additional points only
where it is necessary (near initial points), and very sparse additional points else-
where. This significantly reduces the number of points to be treaded by the algo-
rithm, and thus the computational time. On the contrary, traditional methods
using three dimensional regular grids of voxels have to choose between preci-
sion (with a very dense grid) and computational efficiency. Second, all processes
are performed using a single general algorithm which allows to deal with many
fronts on weighted graphs of arbitrary topology, and can be used for many types
of data (not only 3D point clouds). Finally, no spatial discretization is needed,
thanks to the equations being directly expressed in a discrete form.
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5 Conclusion

In this paper, we proposed a point clouds fast surface reconstruction algorithm
based on fronts propagation over weighted graphs. We show that our approach
deals with multiple types of data and produces robust results. In addition, this
method is fast and does not need large memory requirements.
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