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a b s t r a c t

In this paper, we propose an adaptation and a transcription of the mean curvature level
set equation on the general discrete domain, a weighted graph. For this, we introduce
perimeters on graphs using difference operators and define the curvature as the first
variation of these perimeters. Then we propose a morphological scheme that unifies both
local and nonlocal notions of mean curvature on Euclidean domains. Furthermore, this
scheme allows to extend the mean curvature applications to process images, manifolds
and data which can be represented by graphs.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we present an adaptation of mean
curvature flow level set equation on weighted graphs
using the framework of Partial difference equation [7,9].
This adaptation aims to extend the mean curvature equa-
tion applications to any discrete data that can be repre-
sented by graphs. Moreover, it leads to a finite difference
equation with data depending on coefficients whose solu-
tion gives rise to a new class of morphological operators
for data restoration and enhancement.
1.1. Context and motivation

With the advent of our digital world, many different kinds
of data are now available (images, meshes, social networks,
etc.) that do not necessarily lie on a Cartesian grid and that
can be irregularly distributed. To represent these data, the
kik),
),
most natural and flexible representation consists in using
weighted graphs by modeling neighborhood relationships.
Processing these data on graphs is then a major challenge for
image processing and machine learning communities, to
address many applications, such as denoising, enhancement
and clustering.

Historically, the main tools for the study of graphs or
networks come from combinatorial and graph theory.
Recently, there has been increasing interest in the inves-
tigation of two major mathematical tools for signal and
image analysis, which are PDEs and wavelet on graph [8].
In particular, the PDE on graph was used in different
applications that include filtering, denoising, segmentation
and clustering, see [7,9,12,16–20] and references therein
for more details. In recent papers, the study of PDEs has
appeared to be a subject of interest, dealing with the
existence and qualitative behavior of the solutions [13,14].
In this work, we consider the Partial difference Equations
(PdEs) method that mimics PDEs on graphs, by replacing
differential operators by difference operators on graphs.

Following these works on PdEs on graphs [12], we
propose to extend the notion of mean curvature to discrete
settings and to show the relation between this mean
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curvature and local and nonlocal forms of curvature in
Euclidean domains. We also extend mean curvature appli-
cations to any discrete data that can be represented by
graphs to solve many problems in image and manifold
processing.

1.2. Short overview on level set mean curvature flow

In the last few decades, there has been increasing
interest in mean curvature flows with applications in
image processing (denoising, enhancement, segmenta-
tion); many papers have been devoted to its numerical
algorithms. These algorithms are related to finite differ-
ence methods on uniform grids, threshold dynamics [22]
and mathematical morphology using Min/Max operators
on game theoretical approach, see [4–6] for more details.

The level set formulation to describe the curve evolu-
tion has been introduced by Osher-Sethian [1]. It provides
well-known advantages such as treating self-intersections
or topological changes and can be easily extended to Rd

with dZ1. Given a parametrized curve Γ: ½0;1�-Ω, evol-
ving on a domain Ω�Rd due to the effect of a scalar field
F :Ω-R. The level set method aims to find a function
f ðx; tÞ such that at each time t the evolving curve Γt can
be provided by the 0-level set of f ðx; tÞ. In other words
Γt ¼ fxjf ðx; tÞ ¼ 0g and the curve evolution can be done
solving

∂f
∂t

¼F ∇f x; tð Þ ;j
��

with an initial condition f ðx;0Þ ¼ f 0ðxÞ, the initial embed-
ding of Γ. In the context of image processing, f0 corresponds
to the given noisy image or to an implicit representation of
a front (surface). When the normal velocity F also depends
on the spatial derivative of the normal vector, we obtain the
following mean curvature level set equation:

∂f
∂t

¼K ∇f x; tð Þ ;j
�� ð1Þ

where K¼ divð∇f =j∇f jÞ, the quantity j∇f ðx; tÞj is the module
of gradient.

1.3. Contributions

Our main contributions are as follows. We propose to
define the notion of discrete weighted perimeters using a
family of discrete gradients on graphs. As in the contin-
uous setting, we introduce the notion of nonlocal curva-
ture as the first variation of the discrete perimeters. We
show that our formulation unifies both local and nonlocal
notions of the curvature.

The transcription of the level set equation on graphs
by replacing curvature and gradient leads to a PdE.
The new numerical scheme we propose leads a morpholo-
gical approach alternating dilation and erosion processes as

∂f
∂t

¼max kw uð Þ;0ð Þ ∇þ
w f uð Þjpþmin kw uð Þ;0ð Þ ∇�

w f uð Þjp
����

where Kw;∇þ
w ;∇�

w are respectively the nonlocal curvature
and upwind gradient on a given weighted graph G¼
ðV ; E;wÞ.
Finally, we show that our approach can deal with
different types of applications including image filtering,
images on mesh filtering and 3D surface smoothing.
Remark. The term nonlocal, applied to our discrete opera-
tors, is related to the non-locality of data defined on
Euclidean domains (as images). Indeed, by graph construc-
tion, these operators can mimic non-local operators defined
on the continuous domain. Then, this term is used as a
reference to the continuous case [21] where it means that
each element can interact with every other element in the
domain (and not only adjacent ones), and should not be
confused with the one in non-local filtering (that uses
patches).

1.4. Paper organization

The rest of this paper is organized as follows. Section 2
presents a general definition of Partial difference Equa-
tions on weighted graph. Section 3 presents our new
formalism of the Mean Curvature. Section 4 presents
some experiments. Finally, Section 5 concludes this
paper.

2. Partial difference equations on graphs

2.1. Notations and definitions

We begin briefly by reviewing some basic definitions
and operators on weighted graphs. See [2,9] for more
details.

Let us consider the general situation where any discrete
domain can be viewed as a weighted graph. A weighted
graph G¼ ðV ; E;wÞ consists of a finite set V of N vertices and
of a finite set EDV � V of edges. Let (u, v) be the edge that
connects vertices u and v. An undirected graph is weighted
if it is associated with a weight function w:V � V-½0;1�.
The weight function represents a similarity measure
between two vertices of the graph. According to the
weight function, the set of edges is defined as E¼
fðu; vÞjwðu; vÞ40g. The degree of a vertex u is defined as
μðuÞ ¼∑v � uwðu; vÞ. The neighborhood of a vertex u (i.e., the
set of vertices adjacent to u) is denoted N(u). Notation v� u
means that the vertex v is adjacent to u. Let HðVÞ be the
Hilbert space of real valued functions on the vertices of the
graph. Each function f :V-R of HðVÞ assigns a real value
f(u) to each vertex uAV . Similarly, let HðEÞ be the Hilbert
space of real valued functions defined on the edges of the
graph. These two spaces are endowed with the following
inner products: 〈f ;h〉HðVÞ ¼∑uAV f ðuÞgðuÞμðuÞ with f ; gA
HðVÞ, and 〈F;H〉HðEÞ ¼∑uAV∑vAVFðu; vÞGðu; vÞwðu; vÞ where
F;GAHðEÞ.

Given a function f :V-R, the Lp norm of f is given by

J f Jp ¼ ∑
uAV

jf ðuÞjp
� �1=p

; 1rpo1:

J f J1 ¼max
uAV

ðjf ðuÞjÞ; p¼1:
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2.2. Difference, divergence and discrete gradients on graphs

Let us fix a weighted graph G¼ ðV ; E;wÞ. The difference
operator G:HðVÞ-HðEÞ is given for all f AHðVÞ and
ðu; vÞAE by ðGf Þðu; vÞ ¼ ðf ðvÞ� f ðuÞÞ.

The directional derivative (or edge derivative) of a
function f at a vertex v along an edge e¼uv is defined as
∂vf ðuÞ ¼ ðf ðvÞ� f ðuÞÞ.

The adjoint operator of the difference operator, denoted
by Gn:HðEÞ-HðVÞ, is defined by 〈dwf ;H〉HðEÞ ¼ 〈f ;Gn

wH〉HðVÞ,
with f AHðVÞ and HAHðEÞ. Using the definitions of the
inner products in HðVÞ and HðEÞ and the definition of the
difference operator, we obtain easily the expression Gn at a
vertex u: ðGnHÞðuÞ ¼∑v � uðwðu; vÞ=μðuÞÞðHðv;uÞ�Hðu; vÞÞ.

The divergence operator, defined by divw ¼ �Gn, mea-
sures the net outflow of a function in HðEÞ at each vertex
of V.

Two weighted directional difference operators can be
defined. The weighted directional external and internal
difference operators are respectively

ð∂þ
v f ÞðuÞ ¼ ðf ðvÞ� f ðuÞÞþ and

ð∂�
v f ÞðuÞ ¼ ðf ðvÞ� f ðuÞÞ� ; ð2Þ

with ðxÞþ ¼maxð0; xÞ and ðxÞ� ¼ �minð0; xÞ.
The weighted gradient of a function f AHðVÞ at vertex u

is the vector of all edge directional derivatives:

ð∇wf ÞðuÞ ¼ ð∂vf ðuÞÞTvAV : ð3Þ
Two discrete formulations of weighted morphological

gradients on graphs are defined. The weighted external
∇þ

w and the internal ∇�
w gradient operators are respec-

tively

ð∇þ
w f ÞðuÞ ¼ ð∂þ

v f ðuÞÞTvAV ; ð4Þ

ð∇�
w f ÞðuÞ ¼ ð∂�

v f ðuÞÞTvAV : ð5Þ
To define a notion of regularity of a function f around a

vertex u, we can consider different norms of gradients as
follows:

J ð∇7
w f ÞðuÞJp ¼ ∑

v � u
wðu; vÞððf ðvÞ� f ðuÞÞ7 Þp

� �1=p
: ð6Þ
Fig. 1. Graph boundary on two different graphs. Gray vertices correspond to set
(a) 4-Adjacency image grid graph. (b) Arbitrary undirected graph.
J ð∇7
w f ÞðuÞJ1 ¼max

v � u
ðwðu; vÞððf ðvÞ� f ðuÞÞ7 ÞÞÞ; ð7Þ

∇7
w refers to both external and internal gradients (with

respect to the sign). These gradients have the following
property:

J ð∇wf ÞðuÞJpp ¼ J ð∇þ
w f ÞðuÞJppþ J ð∇�

w f ÞðuÞJpp: ð8Þ

Moreover, with a constant weight function and p¼1,
Eq. (8) recovers the usual expression of algebraic morpho-
logical external and internal gradients.

These gradients are used in [9] to adapt the well-known
Eikonal equation on continuous domains defined as

∂f
∂t

x; tð Þ ¼ F xð ÞJ ∇fð Þ x; tð ÞJp; F xð ÞAR; ð9Þ

to the discrete following equation on graph:

∂f
∂t

u; tð Þ ¼ F þ uð ÞJ ∇þ
w f

� �
uð ÞJp�F � uð ÞJ ∇�

w f
� �

uð ÞJp: ð10Þ
This equation summarizes the dilation and erosion

processes. When F40, then the external gradient is used
and this equation corresponds to a dilation. When Fo0,
this equation corresponds to an erosion.

3. Mean curvature on graph

In this section, we present our new definition of mean
curvature on graph by introducing the nonlocal perimeters
on graph. We define the mean curvature as the first
variation of these perimeters. We will show that the
transcription of the mean curvature equation (1) using
our definition and the morphological gradients leads to a
difference equation that can be solved by a simple and
iterative digital algorithm involving morphological dilata-
tion and erosion on graph.

3.1. Nonlocal perimeters and co-area formula on graph

Let A be a set of connected vertices with A� V . We
denote ∂þA¼ fuAAcj(vAA; v� ug as the outer vertex
boundary, let ∂�A¼ fuAAj(vAAc; v� ug be the inner
vertex boundary where Ac is the complement of A
(Fig. 1). Let ∂vA¼ ∂þA [ ∂�A be the symmetric vertex
A. Plus and minus vertices are respectively outer ∂þA and inner ∂�A sets.
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boundary. Note that ∂þA¼ ∂� ðAcÞ; ∂� ðAÞ ¼ ∂þ ðAcÞ and
∂ðAÞ ¼ ∂ðAcÞ. We define the edge boundary ∂EA¼
fðu; vÞAE;uAA; vAAcg. Let χ be an indicator function with

χAðuÞ ¼
1 if uAA
0 otherwise:

(

The following proposition elucidates the relationship
between the discrete gradient and the boundary set which
are defined.

Proposition. Let 1rpo1 and A� V .

J∇þ
w χAðuÞJp ¼ ∑

vAA
ðwðu; vÞÞp

 !1=p

χ∂þ AðuÞ; ð11Þ

J∇�
w χAðuÞJp ¼ ∑

vAAc
ðwðu; vÞÞp

 !1=p

χ∂� AðuÞ; ð12Þ

J∇wχAðuÞJp ¼ J∇þ
w χAðuÞJpþ J∇�

w χAðuÞJp: ð13Þ

The above equations were obtained by replacing the
different variables (f by χA) in Eqs. (6) and (8).

We see that for uAA, J∇þ
w χAðuÞJp corresponds to the

weighted number of neighbors of uAAc (equivalently the
weighted numbers of the out-boundary edges between u
and Ac), while J∇�

w χAðuÞJp is the weighted number of
in-boundary edges between uAAc and J∇wχAðuÞJp is the
weighted number of in-boundary and out-boundary
edges.

Based on the previous definitions, let us define a family
of perimeters on graph.

Definition. For 0opo1 and A� V , the perimeters of A
are defined as

Perþw;p Að Þ ¼ 1
2p

∑
uAV

J∇þ
w χA uð ÞJp; ð14Þ

Per�w;p Að Þ ¼ 1
2p

∑
uAV

J∇�
w χA uð ÞJp; ð15Þ

Perw;p Að Þ ¼ 1
p

Perþw;p Að ÞþPer�w;p Að Þ
	 


: ð16Þ

In the case where p¼1, it is easy to show that

Perþw;1ðAÞ ¼ Per�w;1ðAÞ and

Perw;1ðAÞ ¼ 2Perþw;1ðAÞ ¼ ∑
uAV

J∇wχA J1 then

Perw;1ðAÞ ¼ ∑
uAAc

∑
vAA

wðu; vÞ;

which is the definition of the graph cut formulation.
As in the continuous case where the perimeter is linked

to the total variation via co-area formula, we show that our
proposed perimeters cover this property.

A key property of the gradient in this case is called co-
area formula. This is an extension of some properties of
the total variation on graph.
Proposition. For any function f :V-R

Df ¼
Z þ1

�1
Dχff 4 tg dt; ð17Þ

where D denotes any one of j∇wj1, j∇wj71 , j∇wj71 .
D are the functions of the form ∑uAVwðu; vÞðf ðvÞ� f ðuÞÞ7

and ∑uAV ðwðu; vÞjf ðvÞ� f ðuÞj, where the weights wðu; vÞ are
non-negative.

Proof. This proposition just follows easily from ja�bj ¼R þ1
�1 jχfa4 tg �χfb4 tgj dt, and ða�bÞ7 ¼ R þ1

�1 ðχfa4 tg �
χfb4 tgÞ7dt, where a and b AR.
The above proposition allows to recover the following

definitions which can be used to relax many problems of
optimization involving the discrete perimeters:

Jþw;1ðf Þ ¼
Z þ1

�1
Jþw;1ðχff ðuÞ4 tgÞ dt

¼
Z þ1

�1
Perþw;1ðχff ðuÞ4 tgÞ dt: ð18Þ

J�w;1ðf Þ ¼
Z þ1

�1
J�w;1ðχff ðuÞ4 tgÞ dt

¼
Z þ1

�1
Per�w;1ðχff ðuÞ4 tgÞ dt: ð19Þ

Jw;1ðf Þ ¼
Z þ1

�1
Jw;1ðχff ðuÞ4 tgÞ dt

¼
Z þ1

�1
Perw;1ðχff ðuÞ4 tgÞ dt; ð20Þ

where Jw;1 is a regularization functional that extends the
total variation on graph and is defined as

Jþw;1f uð Þ ¼ 1
2
∑

uAV
J ∇þ

w f
� �

uð ÞJ1; ð21Þ

J�w;1f uð Þ ¼ 1
2
∑

uAV
J ∇�

w f
� �

uð ÞJ1; ð22Þ

Jw;1f ðuÞ ¼ ∑
uAV

J ð∇wf ÞðuÞJ1: ð23Þ

As in the continuous domains, we define the mean
curvature as the first variation of the perimeters that we
have just defined (16). □
Definition. Let u0A∂A¼ ∂þA [ ∂�A.

For u0A∂þA, the mean curvature of u0 is defined as

Kþ
w u0;Að Þ ¼ Perþw;1ðA [ fu0gÞ�Perþw;1ðAÞ

μðu0Þ
; ð24Þ

where μðu0Þ define the degree of a vertex u0. And for
u0A∂�A, the mean curvature of u0 is defined as

K�
w u0;Að Þ ¼ Per�w;1ðAÞ�Per�w;1ðA�fu0gÞ

μðu0Þ
: ð25Þ

By replacing the variables (A by A [ fu0g) in Eq. (14), it
can be rewritten as

Perþw;1ðA [ fu0gÞ ¼ ∑
vA ðfA[fu0gÞc

∑
vA ðfA[fu0gÞ

γðu; vÞ

¼ ∑
vA ðAc �fu0gÞ

∑
vA ðA[fu0gÞ

γðu; vÞ: ð26Þ
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It is easy to show that

Perþw;1ðA [ fu0gÞ�Perþw;1ðAÞ
¼ ∑

vAAc
γðu0; vÞ� ∑

vAA
γðu0; vÞ; ð27Þ

then the mean curvature Kþ
w of u0 is rewritten as

Kþ
w u0;Að Þ ¼∑vAAcγðu0; vÞ�∑vAAγðu0; vÞ

μðu0Þ
: ð28Þ

Similarly, the mean curvature K�
w of u0 is rewritten as

K�
w u0;Að Þ ¼∑vAAcγðu0; vÞ�∑vAAγðu0; vÞ

μðu0Þ
: ð29Þ

Then, for u0A∂A, the mean curvature is defined as

Kw;1 u0;Að Þ ¼∑vAAwðu0; vÞ�∑vAAcwðu0; vÞ
μðu0Þ

: ð30Þ

Based on this definition, we can extend the notion of
curvature to any function f on a graph by considering its
level sets.

Let f :V-R and uAV . The mean curvature Kw;1 of f at u
on a graph is defined as

Kw;1ðu; f Þ ¼Kw;1ðu; ff ðvÞZ f ðuÞgÞ ð31Þ

Kw;1 u; fð Þ ¼∑f ðvÞ� f ðuÞZ0wðu; vÞ�∑f ðvÞ� f ðuÞo0wðu; vÞ
μðuÞ ð32Þ

Kw;1 u; fð Þ ¼∑uAVwðu; vÞ signðf ðvÞ� f ðuÞÞ
μðuÞ ; ð33Þ

with

signðrÞ ¼ 1 if rZ0
�1 otherwise:

(

3.2. Connection with nonlocal mean curvature and
Euclidean domains

In this section, we show that our definition of mean
curvature is linked to the notion of fractional mean
curvature on Euclidean domain introduced in [10]. The
notion of the fractional perimeter (s-perimeter) and the
corresponding minimization problem was introduced in
[11]. The s-perimeter of A�Rn is defined as

Pers Að Þ ¼ cn

Z
A

Z
Ac

1
jx�yjnþ s dx dy; ð34Þ

where x and y AA and cn is a normalization constant.
The main idea of the s-perimeter is that any point

inside A interacts with any point outside A. The contin-
uous fractional curvature is defined formally as the first
variation of these s-perimeters as follows:

K x;Að Þ ¼ cn

Z
A

χAðyÞ�χAc ðyÞ
jx�yjnþ s dy

¼ cn

Z
A

1
jx�yjnþ s dy�cn

Z
Ac

1
jx�yjnþ s dy: ð35Þ

The above equation can be interpreted as a continuous
version of our proposed definition. Let us consider a
nonlocal Euclidean graph G¼ ðV ; E;wÞ with V ¼Rn, A� V ,
E¼ fðx; yÞAV � V=wðx; yÞ40g.
For

w x; yð Þ ¼
1

jx�yjnþ s with 0oso1

0 otherwise;

8><
>:

our mean curvature is defined as

Kw;1 x;Að Þ ¼∑yAAwðx; yÞ�∑yAAcwðx; yÞ
μðxÞ : ð36Þ

One can see that the above equation corresponds to the
continuous version of Eq. (35) if we consider μðxÞ ¼ cn.

Now, we consider a local Euclidean graph G with a
weight function defined as follows:

wðx; yÞ ¼
1 with yABξðxÞ
0 otherwise;

(

where BξðxÞ is a ball centered on x and with radius ξ. Then,
the mean curvature can be rewritten as

Kw;1 x;Að Þ ¼∑yAA\BξðxÞ1�∑yAAc \BξðxÞ1
μðxÞ

¼ jA \ BξðxÞj�jAc \ BξðxÞj
jBξðxÞj

; ð37Þ

where jXj is the cardinal of X. This equation is an
approximation of the continuous local curvature.
3.3. Morphological scheme for mean curvature flows

In this section, we present a general numerical scheme
for the mean curvature flows on graphs. This scheme can
deal with graphs of different topologies and with different
norms. We also provide an explicit scheme for the case of
L1 norm as well as a morphological interpretation.

Based on the definition of our mean curvature and the
transcription of Eq. (1), our formulation can be expressed
as follows:

∂f
∂t

uð Þ ¼Kþ
w f uð Þð ÞJ ∇þ

w f
� �

uð ÞJp�K�
w f uð Þð ÞJ ∇�

w f
� �

uð ÞJp
f ðu;0Þ ¼ f 0ðuÞ;

8<
:

ð38Þ

where Kþ
w ðxÞ ¼ ðKwðxÞÞþ and K�

w ðxÞ ¼ ðKwðxÞÞ� .
Now, let us show that this iterative process corresponds

to an alternate dilation and erosion type filter depending
on the sign of Kw. In particular, when Kw40, Eq. (38)
becomes

∂f
∂t

uð Þ ¼Kþ
w f uð Þð ÞJ ∇þ

w f
� �

uð ÞJp
f ðu;0Þ ¼ f 0ðuÞ;

8<
: ð39Þ

that corresponds to a discrete dilation process.
Similarly, when Kwo0, Eq. (38) becomes

∂f
∂t

uð Þ ¼K�
w f uð Þð ÞJ ∇�

w f
� �

uð ÞJp
f ðu;0Þ ¼ f 0ðuÞ;

8<
: ð40Þ

that corresponds to a discrete erosion process.



Fig. 2. Mean curvature evolution of a zebra curve. (a) presents the initial zebra image. (b, d, f) present the curve motion by mean curvature on a local
structure graph after 5, 10 and 20 iterations respectively. (c, e, g) present the curve motion by mean curvature on a nonlocal graph structure after 5, 10
and 20 iterations respectively.
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In the case where p¼1, Eq. (38) becomes

∂f
∂t

uð Þ ¼Kþ
w f uð Þð ÞJ ∇þ

w f
� �

uð ÞJ1�K�
w f uð Þð ÞJ ∇�

w f
� �

uð ÞJ1
f ðu;0Þ ¼ f 0ðuÞ:

8<
: ð41Þ

To derive morphological scheme for the solution of
Eq. (41), we introduce two operators, nonlocal dilation (NLD)
and nonlocal erosion (NLE) that are defined respectively as

NLDðf ðuÞÞ ¼ f ðuÞþ J ð∇þ
w f ÞðuÞJ1: ð42Þ

NLEðf ðuÞÞ ¼ f ðuÞ� J ð∇�
w f ÞðuÞJ1: ð43Þ

The time variable can be discretized using explicit Euler
method as

∂f
∂t

uð Þ ¼ f nþ1ðuÞ� f nðuÞ
Δt

; ð44Þ

where f nðuÞ ¼ f ðu;nΔtÞ and Eq. (41) can be rewritten as the
following iterative equation:

f nþ1ðuÞ� f nðuÞ ¼ΔtðKþ
w f nðuÞJ ð∇þ

w f nÞðuÞJ1Þ
�ΔtðK�

w f nðuÞJ ð∇�
w f nÞðuÞJ1Þ ð45Þ
Fig. 3. Noisy image filtering. (a) presents the initial image, (b, c, d) present the fi
iterations respectively. (e, f, g) present the filtering using mean curvature on a
The above equation can be rewritten using the NLD and
NLE definitions as

f nþ1ðuÞ ¼ΔtðKþ
w f nðuÞNLDðf nðuÞÞ�ΔtðKþ

w f nðuÞÞf nðuÞ
�ΔtðK�

w f nðuÞÞf nðuÞ
þΔtðK�

w f nðuÞÞNLEðf nðuÞÞþ f nðuÞ
¼ f nðuÞð1�Δt½Kþ

w ðf nðuÞÞþK�
w ðf nðuÞÞ�Þ

þΔtKþ
w ðf nðuÞÞNLDðf nðuÞÞ

þΔtK�
w ðf nðuÞÞNLEðf nðuÞÞ: ð46Þ

One can remark that contrary to the PDEs case, no
spatial discretization is needed thanks to derivatives
directly expressed in a discrete form.

In the case where Kw40 and Δto1=Kw, Eq. (46)
summarizes the averaging between the initial function
and the NLD operator and can be rewritten as

f nþ1ðuÞ ¼ f nðuÞð1�ΔtKþ
w ðf nðuÞÞÞ

þΔtKþ
w ðf nðuÞÞNLDðf nðuÞÞ: ð47Þ

In the case where 1�ΔtKþ
w ¼ 0, Eq. (47) can be inter-

preted as an iterative nonlocal dilation (NLD) process.
ltering using mean curvature on a local graph structure after 5, 10 and 20
nonlocal graph structure after 5, 10, 20 iterations respectively.



Fig. 4. Noisy image filtering. (a) presents the initial image, (b) presents a noisy Lena with sigma¼20, (c) presents a noisy Lena with sigma¼25,
(d, e) present the filtered Lena using our mean curvature approach. (f) and (g) present respectively a colored noisy Lena image and the filtering result using
our mean curvature. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Similarly, in the case where Kwo0 and Δto1=Kw,
Eq. (46) summarizes the averaging between the initial
function and NLE operator, and can be interpreted as an
iterative NLE process.

In the case where Kwa0 and 1�ΔtjKwjZ0, Eq. (47)
summarizes an average filtering process interpolation
between an image and either a nonlocal dilation or a
nonlocal erosion process.

At each step of this algorithm, the new value at vertex u
depends only on its value at step n and the existing values
in its neighborhood.
Fig. 5. Noisy image filtering. (a) presents the initial image, (b, c, d) present the fi
iterations respectively. (e, f) present the filtering using mean curvature on a nonlo
filtered image with psnr¼33.4928.
In the particular case where w¼1 (unweighted graph)
and u� u and Δt ¼ 1=jK1j, Eq. (46) can be rewritten as the
following iterative equation:

f nþ1ðnÞ ¼
max
u � u

f nðuÞ if K140

min
u � u

f nðuÞ if K1o0

f nðuÞ otherwise

8>>><
>>>:

that corresponds to alternate dilation and erosion pro-
cesses and that represents a new class of shock filter [15].
ltering using mean curvature on a local graph structure after 5, 10 and 20
cal graph structure after 5, 10 iterations respectively, (g) presents the final
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Particular case: In the case where we have an un-
weighted graph G¼ ðV ; E;wÞ. Our formulation recovers
the classical algebraic flat morphological dilation formula-
tion over graphs. The NLD is rewritten as

f nþ1ðuÞ ¼ f nðuÞþmax
v � u

ðmaxð0; ðf nðvÞ� f nðuÞÞÞÞ: ð48Þ

If f nðvÞ� f nðuÞr0 then f nþ1 ¼ f n. If f nðvÞ� f nðuÞ40 thenwe
obtain f nþ1ðuÞ ¼ f nðuÞþmaxv � uð0; ðf nðvÞ� f nðuÞÞ ¼ f nðuÞþ
maxv � uðf nðvÞÞ� f nðuÞ. For both cases, by considering that
the neighborhood of vertex u includes u itself, we recover
Fig. 6. Noisy image filtering. (a) presents the initial image, (b, c, d) present the fi
iterations respectively. (e, f, g) present the filtering using mean curvature on a
the classical algebraic dilation over graphs:

f nþ1ðuÞ ¼max
v � u

ðf nðvÞÞ: ð49Þ

In this case, the structuring element is provided by the
graph topology and the vertices' neighborhoods. Similarly,
we can show that the NLE corresponds to the following
classical algebraic erosion over graphs:

f nþ1ðuÞ ¼min
v � u

ðf nðvÞÞ: ð50Þ

In the case where we have an unweighted grid graph
example (w¼1), the NLD and NLE correspond to the
ltering using mean curvature on a local graph structure after 5, 10 and 20
nonlocal graph structure after 5, 10, and 20 iterations respectively.
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classical dilation and erosion. Otherwise, for a weighted
grid graph where the weight function depends on the
image details, our scheme can be seen as a conditional
adaptive dilation and erosion depends on the sign of Kw.
3.4. Some properties

Our iterative scheme can be written as

f nþ1ðuÞ ¼ f nðuÞð1�ΔtðjKwjðf nðuÞÞÞÞ
þΔtKþ

w ðf nðuÞÞNLDðf nðuÞÞ
Fig. 7. Noisy image filtering. (a) presents the initial image, (b, c, d) present the fi
iterations respectively. (e, f, g) present the filtering using mean curvature on a
þΔtK�
w ðf nðuÞÞNLEðf nðuÞÞ: ð51Þ

In the case where Δt ¼ 1=jKwj, our iterative scheme can
be rewritten as

f nþ1 uð Þ ¼Kþ
w ðf nðuÞÞ
jKwj

NLD f n uð Þ� �þK�
w ðf nðuÞÞ
jKwj

f n uð Þ� �
NLE f n uð Þ� �

ð52Þ
The above equation can be rewritten as a nonlocal average

operator as

f nþ1ðuÞ ¼ signðKþ
w ðf nðuÞÞNLDðf nðuÞÞÞ

þsignðK�
w ðf nðuÞÞNLEðf nðuÞÞÞ ¼NLAðf nÞðuÞ: ð53Þ
ltering using mean curvature on a local graph structure after 5, 10 and 20
nonlocal graph structure after 5, 10, and 20 iterations respectively.
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We first show that this scheme satisfies the Minimum–

Maximum Principle (MMP).

Proposition. Our scheme (52) satisfies the MMP.

Proof. Let m¼minuAV ðf ðuÞÞ and M¼maxuAV ðf ðuÞÞ. By
definitions, we know that our nonlocal operators NLE,
NLD respectively satisfy

mrNLEðf 0ðuÞÞrM; 8uAV ;

mrNLDðf 0ðuÞÞrM; 8uAV : ð54Þ
According to these inequalities, we can then write

mrsignðKþ
w ðf 0ðuÞÞNLDðf 0ðuÞÞÞþsignðK�

w ðf 0ðuÞÞNLEðf 0ðuÞÞÞ
rM; 8uAV ; ð55Þ

and

mrNLAðf 0ÞðuÞrM; 8uAV : ð56Þ
Finally, by this introduction, this relation can be general-

ized to any time step n.
The scheme is thus stable and corresponds to a nonlocal

filtering process that alternates dilation and erosion. Con-
sidering a graph G¼ ðV ; E;wÞ and a function f 0AHðVÞ, a
Fig. 8. Noisy image filtering. (a) presents the initial image, (b, c, d) present the fi
iterations respectively. (e, f, g) present the filtering using mean curvature on a
simple filtering process can then be written using the
following algorithm:
1.
lter
nonl
Vertices are ordered linearly. We have u1ou2o⋯oun.

2.
 The algorithm is initialized with f 0 ¼ f 0.

3.
 For every k¼0,…,N do f nþ1ðukÞ ¼NLAðf nÞðukÞ. □

Proposition. If the above filtering process converges to a
function fn, then fn satisfies Kþ

w ðf nðuÞÞJ ð∇þ
w f nÞðuÞJ1�

K�
w ðf nðuÞÞJ ð∇�

w f nÞðuÞJ1 ¼ 0, 8uAV .

Proof. Let fn be the limit of scheme (52), then we have

f nðuÞ ¼NLAðf nÞðuÞ
f nðuÞ ¼ f nðuÞþsignðKþ

w ðf nðuÞÞNLDðf nðuÞÞÞ
þsignðK�

w ðf nðuÞÞNLEðf nðuÞÞÞ
f nðuÞ ¼ f nðuÞþKþ

w ðf nðuÞÞJ ð∇þ
w f nÞðuÞJ1

�K�
w ðf nðuÞÞJ ð∇�

w f nÞðuÞJ1
0¼Kþ

w ðf nðuÞÞJð∇þ
w f nÞðuÞJ1�K�

w ðf nðuÞÞJð∇�
w f nÞðuÞJ1: □

ð57Þ
ing using mean curvature on a local graph structure after 5, 10 and 20
ocal graph structure after 5, 10, and 20 iterations respectively.



Fig. 9. Noisy image filtering. (a) presents the initial image, (b, c, d) present the filtering using mean curvature on a local graph structure after 5, 10 and 20
iterations respectively. (e, f, g) present the filtering using mean curvature on a nonlocal graph structure after 5, 10, and 20 iterations respectively.

Table 1
Filtering methods of noisy Lena image psnr comparison with different
values of sigma.

sigma BM3D NLm LPA-ICI BLSGSM SA-DCT Our method

20 33.05 31.51 30.7 32.69 32.63 32.9158
25 32.08 30.36 29.66 31.71 31.66 31.7535

A. El Chakik et al. / Signal Processing 105 (2014) 449–463 461
4. Applications

The proposed formulation of the mean curvature
flow equation can be used to process any function
defined on vertices of a graph or on any arbitrary discrete
domain.

This section illustrates the potentialities of our formu-
lation through examples of image filtering, image on
surface filtering and 3D surface smoothing. Different graph
structures and weight functions are also used to show the
flexibility of our approach. The objective of the following
experiments is not to solve a particular application. They
only illustrate the potential and the behavior of our mean
curvature definition formulation.
4.1. Weighted graph construction

Any discrete domain can be represented by a weighted
graph where functions of HðVÞ represent the data to
process. In the general case, an unorganized set of points
V �Rn can be seen as a function f 0:V � Rn-Rn. Then,
constructing a graph from this data consists in defining the
set of edges E by modeling the neighborhood. It is based
on a similarity relationship between and a pairwise dis-
tance measure d:V � V-Rþ .

In this paper, we focus on two particular graphs: the
grid graphs and the k-nearest neighbor graphs. Grid
graphs are the natural structure to describe an image with
a graph. Each pixel is connected by an edge to its adjacent
pixels. The k nearest neighbors graph, noted k-NNG, is a
weighted graph where each vertex uAV is connected to its
k nearest neighbors which have the smallest distance
measure toward u according to function d.

Then, the weight function w can be defined using usual
similarity functions depending on application and graph
topology, and satisfies

wðu; vÞ ¼ gðu; vÞ if ðu; vÞAE

0 otherwise

�
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where g is one of the following similarity functions:

g0ðu; vÞ ¼ 1;

g1ðu; vÞ ¼ eð�dðf 0ðuÞ;f 0ðvÞÞ=s2Þ with s40: ð58Þ

4.2. Mean curvature for shape evolution

Let f0 be a level set function that represents our initial
data where f 0 ¼ χΩO

�χΩc
0
, with χ:V-f0;1g as the indicator

function and Ω0
c
as the complement of Ω0. In other words f

equals 1 in Ω0 and �1 in its complement. First in Fig. 2, we
show the evolution of the zebra curve under the effect
of mean curvature flow using local and nonlocal graph
structures. The first column presents the evolution of
the zebra curve using a local graph (i.e., 4-adjacency grid
graph) with a constant weight function wðu; vÞ ¼ 1 at
different steps. The second column presents the same
results but on a nonlocal graph. In this example, the graph
is constructed as a 16-adjacency grid graph with the
Fig. 10. Image on mesh filtering. (a) presents the initial noisy image on
surface, (b) presents a zoom on the point clouds of the initial model,
(c) presents the filtered model by mean curvature on local graph after 30
iterations with w¼1, (d) presents a zoom on the point clouds of the
filtered model, (e) presents the filtered model by mean curvature after 30
iterations with s¼ 20, and (f) presents a zoom on the point clouds of the
filtered model.

Fig. 11. 3D surface smoothing. (a, c, e, g) present respectively the initial
3D noisy Venus point clouds, the reconstructed surface, the Venus surface
after 5 iterations using our mean curvature on nonlocal graph structure,
and the Venus surface after 15 iterations. (b, d, f, h) present respectively
the initial 3D noisy Dragon point clouds, the reconstructed surface, and
the Dragon surface after 5 iterations using our mean curvature on
nonlocal graph structure, the Dragon surface after 15 iterations.
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weight function wðu; vÞ ¼ eð Ju�v J=s2Þ and s¼ 10. One can
see that the motion of the curve with a nonlocal graph
better preserves the global form of the initial zebra curve.

4.3. Mean curvature for image filtering

In this paragraph, we illustrate the behavior of our
approach to perform noisy images filtering. Let f 0:V-Rn

be a level set function that represents initial data.
Fig. 3 presents a comparison between the effects of

filtering of a noisy image using mean curvature flow on local
and nonlocal graph structures. The first line presents results
obtained on a local graph. The second line presents results
obtained on a nonlocal graph. In this example, we construct
a 16-adjacency grid graph with wðu; vÞ ¼ eð�dðFðuÞ;FðvÞÞ=s2Þ and
s¼ 20, where F:V � Rd associates a patch of pixels to every
vertex (this to better describe texture informations). Both
lines present results at different steps of mean curvature
flow. Similar to the previous example, one can remark that
nonlocal structure better preserves image details.

Fig. 4 presents the filtering of a noisy Lena image noised
by white Gaussian noise with different values of sigma and
a noisy colored Lena image. The graph construction is
the same as the example in Fig. 3. One can see that our
approach preserves the image details. Figs. 5–9 present a
comparison of mean curvature filtering of a textured noisy
image on local and nonlocal graph structures. The first line
presents results obtained on a local graph, the second one
presents results obtained on a nonlocal graph. The graph
construction is the same as the example in Fig. 3. One can
see that the filtering on nonlocal graph structure better
preserves the image textures.

Table 1 presents the comparison of different filtering
methods on the Lena noisy image; the methods' psnr
values were taken from [23]. In this example, we added
a white Gaussian noise with different values of sigma. The
results of our filtering are shown in Fig. 3 (first and second
lines). One can see that our approach has a good value of
psnr comparing with the other approaches.

4.4. Application to images on surfaces filtering

In this paragraph, we illustrate the adaptivity of our
approach to perform noisy image on surfaces filtering. The
approach is the same that for image on regular grid,
but with a different graph topology. Fig. 10 presents the
filtering of an image on a 3D surface (or mesh) on local and
nonlocal graph structures. The first line shows the initial
model, the second one shows the filtering result on a local
graph structure and the third one shows the filtering result
on a nonlocal graph structure. The graph was constructed
using the mesh structure.

4.5. Application to 3D surface smoothing

Another application that illustrates the adaptivity of
our approach is the 3D surface smoothing. Fig. 11 presents
a 3D noisy surface smoothing using mean curvature flow
and the fast surface reconstruction method presented in
[3]. In this example, the graph is a k-NN graph constructed
from the set of initial points and numerous additional
points as described in [3]. The weight function is given
by wðu; vÞ ¼ eð�dðf 0ðuÞ;f 0ðvÞÞ=s2Þ with s¼ 10. Similar to the
first example, the level set function f0 is defined as f 0 ¼
χΩO

�χΩc
0
.

5. Conclusion

In this paper, we have introduced an adaptation of the
mean curvature on weighted graphs as the first variation
of perimeters, based on PdEs and using a framework of
discrete operators. Experimental results have shown the
potentiality of the proposed formulation of mean curva-
ture level sets and its adaptivity to graphs of arbitrary
topology.
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