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On the p-Laplacian and oo-Laplacian on Graphs with Applications in Image and
Data Processing™
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Abstract. In this paper we introduce a new family of partial difference operators on graphs and study equations
involving these operators. This family covers local variational p-Laplacian, oo-Laplacian, nonlocal
p-Laplacian and oo-Laplacian, p-Laplacian with gradient terms, and gradient operators used in mor-
phology based on the partial differential equation. We analyze a corresponding parabolic equation
involving these operators which enables us to interpolate adaptively between p-Laplacian diffusion-
based filtering and morphological filtering, i.e., erosion and dilation. Then, we consider the elliptic
partial difference equation with its corresponding Dirichlet problem and we prove the existence and
uniqueness of respective solutions. For p = oo, we investigate the connection with Tug-of-War
games. Finally, we demonstrate the adaptability of this new formulation for different tasks in image
and point cloud processing, such as filtering, segmentation, clustering, and inpainting.
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1. Introduction. Partial differential equations (PDEs) play a key role for mathematical
modeling throughout applied and natural sciences. In this context, the variational p-Laplacian
and oo-Laplacian and its related variant, the game p-Laplacian, represent fundamental differ-
ential operators, which have been used to describe many important processes, e.g., in physics,
biology, or economy; see [19, 35, 41]. Recently, the nonlocal p-Laplacian has also gained
growing interest in the literature, as it appears naturally in the study of nonlocal diffusion
processes, as well as in mathematical biology, peridynamics, and image processing [1, 2, 28|.
There exist various possibilities to approximate continuous PDEs involving Laplacian formula-
tions in different forms on discrete domains. In the setting of Euclidean domains discretization
schemes based on finite differences, finite elements, finite volumes, etc., are well-investigated
and traditionally used [57]. On the other hand, important physical processes also arise in
more complex geometric environments, e.g., for point cloud data or surfaces. Processing and
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analyzing these types of data is a major challenge and often the discretization of differential
operators becomes more difficult compared to the previously mentioned approaches. One can
classify possible approaches into implicit methods [6, 42, 48], explicit methods [53, 54|, and
intrinsic methods [33]. For a more detailed discussion of these methods and their respective
advantages see, e.g., [37].

Recently, there is high interest in adapting and solving PDEs on data which is given by
arbitrary graphs and networks. The demand for such methods is motivated by existing and
potential future applications, such as in machine learning and mathematical image processing.
Indeed, any kind of data can be represented by a graph in an abstract form in which the vertices
are associated to the data and the edges correspond to relationships within the data. In order
to translate and solve PDEs on graphs, different discrete vector calculus have been proposed
in the literature in recent years; e.g., see [30] and references therein. One simple discrete
calculus on graphs is based on discrete partial differences [23, 24|, which enables one to solve
PDESs on both regular as well as irregular data domains in a unified and simple manner. This
mimetic approach consists of replacing continuous partial differential operators, e.g., gradient
or divergence, by a reasonable discrete analogue, which makes it possible to transfer many
important tools and results from the continuous setting. This leads to the formulation and
solution of partial difference equations (PdEs) on graphs. These PdEs on graphs have been
studied as a topic of their own interest and theoretic results such as the existence of respective
solutions for the latter have been shown [34, 40, 44]. In particular, studying appropriate
formulations of the variational p-Laplacian and oco-Laplacian on graphs gets more and more
into the focus of research as it is well-motivated by many possible applications, e.g., in image
processing (denoising, segmentation, inpainting), but also applications in machine learning,
such as data processing and data clustering [7, 18, 22, 30, 51].

The main goal in this paper is to introduce a novel class of p-Laplacians and oco-Laplacians
on graphs with gradient terms based on partial difference operators. An interesting feature
of the proposed class of operators is the fact that it is able to interpolate adaptively between
terms which correspond to nonlocal diffusion-based filters and terms related to nonlocal mor-
phological filter types, i.e., erosion and dilation. Hence, one is able to combine the advantages
of both formulations within the same framework. Furthermore, we are able to show that
our novel class of p-Laplacians and oo-Laplacians on graphs with additional gradient terms
is able to recover many existing discretization schemes for the local and nonlocal cases and
also known graph-based formulations in the literature. In consequence, we are able to give a
unified discrete formulation for the p-Laplacian and co-Laplacian, the game p-Laplacian, and
the nonlocal p-Laplacian on graphs for both regular and irregular discrete domains.

1.1. Contributions. The main contributions of this work are manifold. First, we give
a comprehensive overview of the p-Laplacian and oo-Laplacian and its related variants, the
game p-Laplacian and the nonlocal p-Laplacian on Fuclidean domains with their respective
applications in image and data processing. We discuss how to translate these continuous
Laplacian formulations to graphs based on previous works on this topic and how to recover
discrete local discretizations traditionally used in image processing. Then, we propose a novel
class of p-Laplacians and co-Laplacians on graphs which unify many existing discretization
schemes, both local and nonlocal. In particular, our proposed formulation can be expressed


https://www.researchgate.net/publication/263896198_Partial_Difference_Operators_on_Weighted_Graphs_for_Image_Processing_on_Surfaces_and_Point_Clouds?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/38338613_Nonlinear_Elliptic_Partial_Difference_Equations_on_Graphs?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/5268591_Nonlocal_Discrete_Regularization_on_Weighted_Graphs_A_Framework_for_Image_and_Manifold_Processing?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/232743728_The_Emerging_Field_of_Signal_Processing_on_Graphs_Extending_High-Dimensional_Data_Analysis_to_Networks_and_Other_Irregular_Domains?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/220692954_Polimeni_JR_Discrete_Calculus_Applied_Analysis_on_Graphs_for_Computational_Science_Springer_Heidelberg?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/220692954_Polimeni_JR_Discrete_Calculus_Applied_Analysis_on_Graphs_for_Computational_Science_Springer_Heidelberg?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/243772950_Variational_Problems_and_Partial_Differential_Equations_on_Implicit_Surfaces?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/256759809_Extinction_and_positivity_of_solutions_of_the_p-Laplacian_evolution_equation_on_networks?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/41220678_Unifying_local_and_nonlocal_processing_with_partial_difference_operators_on_weighted_graphs?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/224010949_The_Level_Set_Methods_and_Dynamic_Implicit_Surfaces?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/257581881_Eikonal_Equation_Adaptation_on_Weighted_Graphs_Fast_Geometric_Diffusion_Process_for_Local_and_Non-local_Image_and_Data_Processing?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/220134901_A_framework_for_intrinsic_image_processing_on_surfaces?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/267187074_Diffuse_Interface_Models_on_Graphs_for_Classification_of_High_Dimensional_Data?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==
https://www.researchgate.net/publication/222696209_Geometric_curve_flows_on_parametric_manifolds?el=1_x_8&enrichId=rgreq-3721309a-227c-4c61-8df7-6d51f6491729&enrichSource=Y292ZXJQYWdlOzI4MTI5MDM0OTtBUzoyOTI3NjIxOTM4MDk0MTFAMTQ0NjgxMTM1NDg3Nw==

2414 A. ELMOATAZ, M. TOUTAIN, AND D. TENBRINCK

as a convex interpolation between two discrete upwind gradient terms. An interesting feature
of this representation is the fact that the respective steering parameters can be chosen data-
dependent, which leads to adaptive filtering effects (nonlocal diffusion and morphological
filtering) in different regions of the same data. Subsequently, we discuss the connection to
local and nonlocal PDEs and a model from stochastic game theory known as the Tug-of-War
game. Again, we show that the proposed unified formulation, using p = oo, leads to PdEs
which coincide with value functions of many Tug-of-War games.

We apply this novel class of the p-Laplacian and co-Laplacian on two PdEs on weighted
graphs which are related to two classical PDEs in the continuous setting, and we prove impor-
tant mathematical properties, e.g., existence and uniqueness of solutions. First, we investigate
a family of parabolic PdEs with initial conditions, leading to a generalization of diffusion and
shock filtering on regular and irregular discrete domains. Then, we study a family of ellip-
tic PdEs with Dirichlet boundary conditions generalizing interpolation processes on discrete
domains and prove the existence and uniqueness of respective solutions.

Finally, we illustrate how this new class of p-Laplacians and oo-Laplacians with gradi-
ent terms can be applied in many examples, i.e., segmentation, denoising, inpainting, and
clustering. To underline the universal applicability of the proposed formulation we test our
algorithms on a wide range of data, i.e., classical images, triangulated meshes, and even
unorganized data such as point clouds or databases.

1.2. Paper organization. This paper is organized as follows. We begin by summarizing
different Laplacian formulations in the continuous setting of Euclidean spaces in section 2.
Subsequently, we give the needed definitions and notation in section 3 to translate Laplacian
formulations to graphs and we discuss previous works on this topic. In section 4 we derive
a novel class of partial difference operators which unifies many discrete formulations of the
p-Laplacian and its mentioned variants. We show the connection between the proposed op-
erator and local and nonlocal PDEs in continuous and discrete settings. We also show that
this operator is related to different version of the stochastic Tug-of-War game. We apply
the proposed formulation on two families of PdEs related to classical PDEs in the continuous
setting in section 5 and give the respective analysis for these problems. Section 6 presents sev-
eral applications, such as denoising or segmentation, on regular images and high-dimensional
unorganized data. Finally, we conclude this paper by a short discussion in section 7.

2. p-Laplacian formulations on Euclidean spaces. We give a comprehensive overview of
continuous Laplacian formulations on Euclidean domains in the following. Since this is the
base of our work we review previous works on this topic and thus make this paper more self-
contained. Additionally, we discuss applications in image and data processing and give links
to other mathematical fields. We start by a discussion of the variational p-Laplacian and oco-
Laplacian operators in section 2.1. Subsequently, we introduce the so-called game p-Laplacian
in section 2.2 and investigate the relationship to the latter variational formulation and the
stochastic Tug-of-War game. Finally, we give the definition of the nonlocal p-Laplacian in
section 2.3.

In the following we denote by 2 C R™ an open, bounded domain and u:  — R a function
on 2.
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2.1. The variational p-Laplacian and oo-Laplacian. The variational p-Laplacian plays
an important role in continuous geometry but also in the field of PDEs, which are used to
describe many phenomena in physics or biology. For an introduction and survey on this topic
see, e.g., [19, 35] and references therein. The variational p-Laplace operator is a quasi-linear
elliptic partial differential operator of second order and can be formulated as

Vu

> , 1<p<oo.
It arises from the Euler—Lagrange equation for minimization of the functional

(2.2) Bu) = X / V()P d |
P Jo

leading to the PDE

(2.3) Aju = 0

with Dirichlet boundary conditions. Many inverse problems in image processing such as
denoising, deconvolution, segmentation, or inpainting are formulated with the help of regu-
larization terms based on weak formulations of the p-Laplacian in (2.1). Note that for p = 2
one retrieves the classical Laplace operator A. The variational p-Laplacian is linked to the
well-known Thikonov regularization (for the case p = 2) and the total variation regularization
(for the case p =1).

For p = oo, the co—Laplacian is defined as [4]

(2.4) Avu — f:i: ou Ou Ou

=1 j=1 8$Z 8:Ej Oxi:nj

2.2. The game p-Laplacian. Recently, a variant of the p-Laplacian known as game p-
Laplacian has been introduced in connection with a stochastic game called Tug-of-War with
noise [47]. The game p-Laplacian is based on the variational p-Laplacian in (2.1) and can be
formulated as

Vu

2. ACy = _ve
(2:5) “ |Vu|?—P

> \Vul* PAu =

|Vu|2_pdiv< > , 1<p<oo.

1 1
p p

Following [46], a definition of the game co—Laplacian is given by
(2.6) ASu = |Vu|?Asu .

It gets clear that one has the following relationships:
Vu
Afu = div | —
Tu iv (!Vu\) |Vul ,

(2.7) )
ASu = §Au.
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If f is a smooth function, then (2.5) can be rewritten as a convex combination of the 2-
Laplacian and the game oo-Laplacian in (2.6) as follows:

2 -2
(2.8) Afu = aASu + bDASu  fora=>,b= ——
p p
Since AYu = Agu — AS u one can rewrite (2.5) as
2p—1 2 —
(2.9) Agu = aASu + bASu  fora= M, b=""2
p p
Another known relationship is given by
. 1o 1. 11
(2.10) Aju = —ATu + ~AZu for—+-=1 and 1<p,qg<oco.
p q p q

The game p-Laplacian is also called normalized as it is homogeneous of degree 1, i.e., for
a € R one has AY(au) = aAf(u), in contrast to the variational p-Laplacian in (2.1), which
is homogeneous of degree (p — 1). This leads to the fact that parabolic PDEs involving the
game p-Laplacian are scaling invariant, which is especially useful for many applications in
mathematical image processing.

For p = 1 this operator is closely related to the mean curvature flow, which has numerous
applications ranging from free boundary problems in material sciences and computational
fluid dynamic to filtering, inpainting, and segmentation in image processing and computer
vision; e.g., see [50] and references therein. For formally p = oo the game p-Laplacian has
been used in several applications in image processing, computer vision, surface reconstruction,
and image inpainting [22, 26].

Recently, a link has been shown between the Tug-of-War game and the game p-Laplacian
for p = oo [46], and the Tug-of-War with noise and the game p-Laplacian for 1 < p < oo

38, 47].

2.3. The nonlocal p-Laplacian. The interest in the fractional and nonlocal Laplacian has
constantly increased over the last few years. These operators are used in various applications
such as continuum mechanics, phase transition phenomena, population dynamics, image pro-
cessing, and game theory; see [2, 1]. In image processing, regularization based on the nonlocal
p-Laplacian [27] is related to works on nonlocal image processing such as initially proposed by
Buades, Coll, and Morel [12]. Nonlocal regularization methods have shown great advantages
over classical models in certain applications, since local smoothness is not required. They
have also shown their ability to preserve both geometric and repetitive structures in images.
For 1 < p < oo, the nonlocal p-Laplacian is defined as follows [1]:

(2.11) Cyu(z) = /Q u( — pluly) — u(@)P>(uly) — u(@) dy, 1<p<oo.

In this case p: R™ — R is a nonnegative continuous radial function with compact support and
11(0) > 0 and [, p(z)dz = 1. The evolution equation involving this operator has been studied
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in [1]. The authors of [1] also show that this operator is derived from the Euler-Lagrange
equation for minimization of the following energy:

(2.12) D) =5 [ [ uta = pluts) — @) dedy

In particular, for

1
2.13 =
(2.13) p(z,y) Pl

with a =n/p+s,0< s <1, and p > 1, we recover the fractional p-Laplacian:

(2.14) Cou(z) = /Q — L ju(y) - u(@)P2(uly) - u(z)) dy.

|z — y|oP

By using (2.13) and p = oo one can recover the Holder infinity Laplacian [15],

(2.15) Loou(®) = max <M>+ i <u(y)_u(x>>7

yeEQy#z ly — x| yeQy#z ly — z|®

which can be formally derived as the limit of p — oo for the minimization of the following
family of energies:

(2.16) JIp(u) :/Q/Q%dzndy.

3. Partial differences and the p-Laplacian on graphs. After the comprehensive overview
on continuous formulations of the variational p-Laplacian and its variants in section 2 we dis-
cuss in the following how to translate the latter to the discrete setting of graphs. By this
we summarize previous works (including our own) on this topic. We begin in section 3.1 by
introducing the basic notation and assumptions we need for translating differential operators
and PDEs to weighted undirected graphs. Subsequently, we give in section 3.2 the funda-
mental definitions for difference operators on weighted graphs in order to define derivatives
and morphological operators. Based on these, we are able to introduce a formulation of the
p-Laplacian and its variants on graphs in section 3.3.

3.1. Basic notation. A weighted graph G = (V, E,w) consists of a finite set V of N € N
vertices, a finite set E C V x V of edges, and a weight function w : V- x V. — [0,1]. In our
case the weight function represents a similarity measure between two vertices of the graph.
We denote by (u,v) € E the edge that connects the vertices v and v and we write u ~ v for
two adjacent vertices. The neighborhood of a vertex u (i.e., the set of vertices adjacent to )
is denoted by N(u) and the degree of a vertex u is defined as d,,(u) =3, ,, w(u,v). For two
vertices u,v € V with u ~ v we set w(u,v) = w(v,u) = 0 and thus the set of edges F can be
characterized by the weight function w as F = {(u,v) | w(u,v) > 0}. A weighted graph G is
called undirected if for every u,v € V the weight function w satisfies the symmetry condition
w(u,v) = w(v,u).
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Let H (V') be the Hilbert space of real valued functions on the vertices of the graph, i.e.,
each function f : V — R in H(V) assigns a real value f(u) to each vertex u € V. For a
function f € H(V) the LP(V) norm of f is given by

/
17l = (S 17@r)"" for1<p<oo,
(31) ueV

[ flloo = Iglea‘ic(]f(u)]) forp=o00.

The Hilbert space H (V') is endowed with the following inner product: (f, g)xv) = >, f(u)
g(u) with f,g € H(V'). Similarly, let H(E) be the Hilbert space of real valued functions defined
on the edges of the graph, i.e., each function F': E — R in H(FE) assigns a real value F'(u,v)
to each edge (u,v) € E. The Hilbert space H(E) is then endowed with the following inner
product: (F,G)ym) = D uey Dovey F(u,0)G(u,v) for F,G € H(E).

Let A C V be a set of connected vertices, i.e., Vu € A there exists a vertex v € A with
(u,v) € E. We denote by 0A the (outer) boundary set of A, which is given by

(3.2) 0A = {ue A°: Jv e Awith (u,v) € E}

where A° =V \ A is the complementary set of A in V.

3.2. Weighted partial differences on graphs. Using the basic notation given in section
3.1 we are able to introduce the needed framework to translate differential operators and
PDEs from the continuous setting to graphs. In particular the fundamental elements for this
translation are weighted partial differences on graphs. For more detailed information on these
operators we refer to [23, 9, 56]. In the following we assume that the considered graphs are
connected and undirected, with neither self-loops nor multiple edges between vertices.

Let G = (V,E,w) be a weighted graph and let f € H(V) be a function on the set of
vertices V' of GG. Then we can define the weighted partial difference of f at a vertex u € V in
direction of a vertex v € V as

(3.3) Opf(u) = Vw(u,v) (f(v) = fu)) .

As for the continuous definition of directional derivatives, we have the following properties
avf(u) = _auf(v)7 Ouf(u) =0, and if f(u) = f(’l)), then 0, f(u) = 0.

Based on the definition of weighted partial differences in (3.3) one can straightforwardly
introduce the weighted gradient operator on graphs V., : H(V) — H(E), which is defined on a
vertex u € V as the vector of all weighted finite differences with respect to the set of vertices
V,ie.,

(3.4) (Vuwf)(w) = (Ouf(u)),ey -

From the properties of the weighted partial differences above it gets clear that the weighted
gradient is linear and antisymmetric. The weighted gradient at a vertex u € V can be
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interpreted as a function in H (V') and hence the £P(V') and £°(V) norm in (3.1) of this finite
vector represent its respective local variation and are given as

v~u

|(Vurf)@lloe = max (Vaolu, o) [£(v) = f(w)]) -

The difference operator of a function f € H(V'), noted G, : H(V) — H(V x V), is defined
on a pair of vertices (u,v) € E by

(3.6) (Guf)(u,v) = Vw(u,v) (f(v) = f(u)).

s Va0l = (Z¢ Wl o)) 10 \)p,

This operator is linear and antisymmetric.

The adjoint operator of the difference operator G : H(E) — H(V) is a linear operator
defined by (Gu f, H)y(r) = (f, G H)nuoy V f € H(V) and V H € H(E). Using the definitions
of difference and inner products in H (V') and H(FE), the adjoint operator G, of a function H €
H(E), can be expressed at a vertex u € V by the following expression:

(3.7) =) Vw(u,v) H(u,v)).

The divergence operator, defined by
(38) Dw = _g;kuy

measures the net outflow of a function of H(FE) at each vertex of the graph. Each func-
tion H € H(E) has a null divergence over the entire set of vertices. From the previ-
ous definitions, it can be easily shown that Y . > oy Guwf(u,v) = 0,f € H(v), and
> wev DuwF(u) =0,F € H(E).

Based on the previous definitions we can define two upwind directional derivatives ex-
pressed by

(3.9) OF f(u) = Vw(u, 0) (f(v) — f(u))™

with the notation ()" = max(0,z) and ()~ = —min(0,z) = max(0, —z).
Similarly, the upwind weighted gradient can be defined as

(3.10) (Vi = (957 w)

veV
The upwind gradient norm with 1 < p < oo is defined for a function f € H(V') as

1

(3.11) Vi@l = [3 Ve (7o) - )]

v~U
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This operator measures the regularity of a function around a vertex u. In the case p = co one
gets

(3.12) 1955 () loo = max(v/aolu, 0) (F(0) — F(w)*) -

A useful relationship between the weighted gradient and its upwind variant is given for a
function f € H(V) by

(3.13) IVwf)p = IVaf@lb + [V f@lb,
and one can deduce that

(3.14) IVaf@lly < IVwf()llp -

Thus the family of upwind gradients provides a slightly finer expression of the gradient.
For instance, one can remark that |V, f(u)||, is always zero if f has a local minimum at u. The
upwind gradient was used in [18, 55| to adapt the Eikonal equation to weighted graphs and to
study existence and uniqueness of respective solutions with applications in image processing
and machine learning.

Finally, the family of gradient operators introduced above can be used to construct several
(nonlocal) regularization functionals on graphs. For instance,

Toaw(f) =D IVuf@)b, 1<p<oo,

ueV

Toouw(F) =D IV f (W)lloo

ueV

T =Y IVEF)r, 1<p<oo,

ueV

Tl =D Ve fW)]eo -

ueV

(3.15)

3.3. Our previous works on p-Laplacian on graphs. The graph p-Laplacian, a generaliza-
tion of the discrete p-Laplacian, started to attract attention in mathematics, machine learning,
and in the image and manifold processing communities. For p # 2 the graph p-Laplacian has
been studied in relation with the p-cheeger cut and data clustering [31] and for semisupervised
classification [59]. Meanwhile, PdEs on graphs based on the discrete p-Laplacian have been
investigated as a subject of their own interest, dealing with existence and qualitative behavior
of respective solutions [34, 40, 44]. In previous works, we have introduced a nonlocal discrete
vector calculus to translate many PDEs and variational methods to graphs. In [9, 23] we have
introduced nonlocal regularization on weighted graphs of arbitrary topology. In particular,
it was shown that these regularizations lead to a family of discrete and semidiscrete diffu-
sion processes based on the discrete p-Laplacian. These processes, parametrized by the graph
structure (topology and geometry) and by the degree p of smoothness, allow us to perform
several filtering tasks such as denoising, simplification, or clustering. Moreover, local and non-
local image regularization are formalized within the same framework, which corresponds to
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the transcription of local or nonlocal regularization proposed in [28]. With the same ideas, we
have proposed PdE-based morphological processes on graphs to transcribe continuous mor-
phological PDEs such as dilation or erosion [56]. The study of well posedness of the Eikonal
equation on graphs was proposed in [18]. Recently we have also proposed the adaptation of
both nonlocal infinity Laplacian [21] and game p-Laplacian for 2 < p < oo on graphs [22].

In graph theory, there are different expressions for the p-Laplacian on graphs [13, 34].
In the context of PdEs on graphs, based on the weighted partial differences (see (3.6)) and
the divergence operators (see (3.8)), we mimic the classical definition of the p-Laplacian on
Euclidean domains to derive a unified form for two expressions: anisotropic and isotropic
p-Laplacian.

Anisotropic graph p-Laplacian. The anisotropic graph p-Laplacian of a function f €
H(V), denoted by Ag, ) : H(V) — H(V), is defined as

(3.16) (A% F)(u) = %Dw(|Gw FIP2Gy f) (W) forl<p<oo.

Using (3.6) and (3.7), the anisotropic p-Laplacian of f € H(V) at a vertex u € V can be
computed as [9, 23
(3.17) (A4 Nw) = 3Vl o) |f(w) = f@lP2(f(v) = f(u)) .

Remark. As in the continuous case, this operator can be formally derived from minimiza-
tion of the following energy on graphs:

1
(3.18) Tup(f) = 5= > IVuf@]} -
P
ueV
Isotropic graph p-Laplacian. The isotropic graph p-Laplacian noted Afum H(V) —
H(V) is defined by
(3.19) (A%, F)(W) = $Du(IVufI5*Guf)(w)  for1<p<oc.

Using (3.6) and (3.7), the isotropic p-Laplacian of f € H(V), at a vertex v € V, can be
computed by

(3200 (AN = 5 3 wlwn) (VL4 IVF@IE ) (F@) ~ Fw)
veV

Similarly to the anisotropic case, this form of the p-Laplacian can be interpreted as the
first variation of the following energy:

(3.21) Tup(f) = ; S IVl -
ueV

For p = 2 we obtain the classical unnormalized Laplacian for both isotropic and anisotropic
Laplacian as

(3.22) (AL o)) = > wlu,v) (fv) = f(u).

v~uU
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Infinity Laplacian. The nonlocal infinity Laplacian of a function f € H(V'), denoted
Ay oo : H(V) — H(V), is defined by [20]

(323) Buoef () = 3 (195 @) lle — [V f(w)]c]
which can be rewritten as
1 +
Apooflu) = =|max(+/w(u,v v) — f(u
o cofw) = 5 [max(Valu o) () - f(w)")

—max( w(u,v) (f(v) —f(u))_)} :

Remark. As in the continuous case, this operator can be formally derived as minimization
of the following family of energies on graphs in the limit for p — oo:

(3.25) Top(£) = D IVuf@), -

ueV

For more details, see |9, 23

Normalized p-Laplacian. In [21] we proposed and studied a discretization of the nor-
malized p-Laplacian on weighted graphs, for p > 2, using the identity (2.8). To achieve this
we proposed a graph version of the normalized 2-Laplacian:

(3.26) AGar() = Ll gy

Then, the discrete normalized p-Laplacian of a function f € H(V'), denoted by A, g : H(V) —
H(V), is defined in [22] as

(3.27) Aasf = $[IVEflo = IV fllso] + BAG o f -

Remark. All the presented operators can have either local or nonlocal effects, depending
on the graph topology.

4. A novel class of graph p-Laplacians and oo-Laplacians with gradient terms. In this
section we propose a novel discrete operator on weighted graphs that corresponds to a new
class of p-Laplace operators with gradients terms. We show that our proposed operator leads
to a general partial difference operator, unifying the operators on graphs presented in section 3
and extending them in a formulation that interpolates between p-Laplacian and morphological
operators on graphs. In section 4.1, we begin by defining the proposed operator, and we
show that particular cases of this operator enable us to recover either the p-Laplacian or the
morphological operator we previously defined. Then we study some connections between this
family and local and nonlocal differential operators in section 4.2 and Tug-of-War games in
section 4.3.
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4.1. Definition of the novel operator. Using the discretization of p-Laplacian and infinity
Laplacian on a general graph domain as introduced in section 3.3, we now introduce a new

expression for both these operators.
Definition 4.1.The Ly, , and Ly, o Laplacians are defined for a function f € H(V) by

Lonflu) = {a(U)II(VU)(U)IIZj — B (Vo W=, 2<p<oo,

’ a@(VEf)@llee = BV f)(u)le p=00,
with a(u), B(u) : H(V) — [0,1], and a(u) + B(u) =

By a simple factorization these operators can be rewritten as

Lupf(u) = 2min(a(u), B(u)Awp f(u)
+ (au) = B() TV )(u )Hp_l

) ~ (au) ~ B() " |(Va AL 2<p < oo,
Luoof (u) = 2min(a(u), 5(u))Aw,co f (1)
u) = B(W) (Vs ) ()l
u) = B(w) (Vi )W)l p=oc.

Considering constant functions a(u) = a and (u) = [, this expression recovers well-known
expressions of Laplacian, infinity Laplacian, or p-Laplacian on graphs and their operators with
gradient terms depending on the choice of «, 3:

e In the case a = 8 # 0 the operator in (4.2) becomes

Lopf(u) = Appf(u),
ﬁw,oof(u) - Aw,oof(u)

and thus recovers the discrete p-Laplacian and oco-Laplacian expressions.
e In the case @ = 1 the operator in (4.2) becomes

Loupf) = VSN
Lusof(u) = (Vi)W

(4.1)

Q

(4.3)

(4.4)

and for 8 =1 it becomes

Lupfw) = =[I(Va H@)IP7Y
Luoof(u) = =[[(Vyf)(W)llso -
We can see that we recover PdE-based morphological operators with the upwind gra-

dient discretization [56].
e In the case a — 8 > 0 the operator in (4.2) becomes
)A

(4.5)

Lupf(u) =2B8(u)Aypf(u)
(4.6) + (a(w) = BV H@IE]

+(a( ) BNV ) (W)l -
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e In the case @ — 8 < 0 the operator in (4.2) becomes

Lopf(u) = 20(u)Ayp, f (u)

— (B(u) — a(u) (Vo H)|P]
Looof (1) = 20:(u) Ay o0 f (1)

— (B(u) — a(u))||(Vip £) (W)l -

(4.7)

Note that for both of the last cases, by using the proposed operator in a parabolic PDE (e.g.,
Of(u) = Ly pf(u)), we recover PDE-based operators that are a linear combination between
nonlocal diffusion/averaging and shock filtering.

4.2. Connection with discretizations of local and nonlocal differential operators. In this
section, we show that our newly introduced p-Laplace operator with gradient terms enables us
to recover classical discretization schemes proposed in the literature to solve local and nonlocal
PDEs.

For this section we consider €2 an open and bounded domain in R™ and f : 2 — R a given
function.

4.2.1. Discretizations of local differential operators. Here we first consider the anisotropic
p-Laplacian and show that its discretization using second order central differences is recovered
by the proposed operator on graphs. Then we investigate the infinity Laplacian and show that
the Oberman discretization is also related to our operator. We also discuss different gradient
norm discretizations and again show the connection with the proposed operator.

Anisotropic p-Laplacian. The anisotropic p-Laplacian is expressed by

of
8$i

-2 9f
' 28:171-} '

(48) TR

i=1
If we discretize this expression with second order central differences of the form

D 1@ = D) ~ LMD I

(4.9)

we get the following discretization of the anisotropic p-Laplacian:

Apf(z) = Z% <|f($z‘ +hi) = [P (f (i + ha) = f @)
(4.10) iz

(i = he) = f@) P2 (Flas = i) = F(@0)) -

Let G(V, E,w) be a weighted graph that represents an n-dimensional grid. Let u be a ver-
tex associated to an n-dimensional vector with the spatial coordinates: u = (iyh1, ..., inhn)7,
where ¢; € N and h; is the grid spacing size with j = 1,...,n. The neighborhood of u can be
defined as N(u) = {v : v = u £ hje;}j=1,.., where e; = (qg)}_,  is the vector such that
qr = 1 if j = k and g = 0 otherwise. o
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We consider the case where a(u) = B(u) = & for each u € V, and 2 < p < co. Identifying

vertices of the graph by their spatial coordinates and setting wy (u, v;) = # we get the following

formulation:

Lopf(w) = AL fw) = Y Vi (uw,0) |f(v) = f)P2(f(0) - f(w)

v~U

(1) = 3 (50 — FP () ~ ()
=1
1) = P2 ) — f(w)

with v;t = u=xh;e;. One can see that we recover the discrete formulation of the local anisotropic
p-Laplacian in (4.10).

Infinity Laplacian. Let f(z) be a smooth function with nonvanishing gradient at x.
Then for the case p = oo we can mimic the Obermann discretization of the infinity Laplace
equation [41] as follows:

(4.12) Axf(r) = min M—I— max M—{—O(ez).

ly—z|=€ €2 ly—z|=€ €2

We use the same graph as discussed above but set the weighting function ws(u,v) as

Thus we get
s Luoof(u) = %1 [max(v/wa(u, v) (f(v) = f(u)) ™) — max(y/wa(u, v)(f(v) = f(u)7)]
= max(f(v) = f(w)" = max(f(v) = f(w)"]

If we define the neighborhood of u as N(u)U{u}, we finally recover the Obermann discretiza-
tion in (4.12),

1

Lugoof(u) = —max(f(v) = f(u)) — max(f(u) - f(v))]
(4.15) = lmax(£(v) ~ f(w)) + min(7(e) ~ f(u))
o SO T@ )~ S
v~U 62 v~U 62 ’

Gradient discretization schemes. If we use the same graph and weighting function
wy as for the local anisotropic p-Laplacian discussed above and use it for a discretization of
the £2-norm of the upwind gradient, we get

I(VEN@IE = 3 Veor(u0) ((F) = F) ™)

(4.16) n
= " max(D;" £(u),0)? + min(D; f(u),0)?
i=1
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for which DZT" and D, denote the classical forward and backward differences:

(4.17) D (f)(u) =

(4.18) Dy (f)(u) =

One can see that (4.16) recovers the Osher—Sethian upwind discretization scheme in [43]
for p = 2. For the case p = co we get

119 |’(v1—:1f)(u7t)uoo = 15135(( wl(“?”)(f(vvt) - f(uvt))+)
( ' ) = Z:rrllfm’n(Djf(u,t),—Dz_f(u,t),O) >

which corresponds in this case to the Godunov discretization scheme for |(V f)(x)|s.

4.2.2. Approximations of nonlocal differential operators. In the following, we analyze
the connection of the proposed operator to discretizations of nonlocal differentials operators,
by using a nonlocal graph construction and a proper weight function: Given a Euclidean graph
G(V,E,w), with V =Q CR", E={(z,y) € VXV | ws(x,y) >0}, 2 < p < o0, and

1
(420) 'UJ3(£E, y) — l[z—y[?s > T 75 Y,s € [07 1]7
0 otherwise .

Fractional p-Laplacian. We are able to approximate the nonlocal fractional p-Laplacian

(2.14) using the proposed operator for a« = 8 = % as

Lugpf(@) = /vasw,y')p\f(y)—f<x>\p-2<f<y>—f<x>>dy
- /Q ‘x%my) @A) — )y

y|s<P

(4.21)

Remark. By using a weighting function that is nonnegative, continuous, and radial and
that has the property Y oy > ey w(u,v) = 1, we recover the nonlocal anisotropic p-Laplacian
(2.11).

Holder infinity Laplacian. For the case p = oo and the weighting function ws defined
as above the proposed operator (4.1) corresponds to the recently investigated Holder infinity
Laplacian equation proposed by Chambolle, Lindgren, and Monneau in [15].

4.3. Connection with Tug-of-War game. Many local PDEs (p-Laplacian equation or
infinity Laplacian equation) are related to a stochastic game called the Tug-of-War game. In
the following we demonstrate that our newly introduced partial difference operator is also able
to recover for p = oo the value functions of the Tug-of-War game and the biased Tug-of-War
game as discussed in [46, 38, 45].
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Originally, the Tug-of-War analogy was used by [46] to prove that every bounded real
valued Lipschitz function F' on a subset Y of a length space X (a length space is a metric space
(X, d) where the distance d(x,y) is the infimum of the lengths of continuous paths in X that
connect x to y) admits a unique Lipschitz extension u : X — R for which Lipyu = Lipsyu
for all open U C X \'Y. When X is the closure of a bounded domain U C R™ and Y is
its boundary, a Lipschitz extension u of F' is absolutely minimal if and only if it is infinity
harmonic in the interior of X \ Y, i.e., it is a viscosity solution to A, u = 0 (where A is the
infinity Laplacian).

As it has been proven that w is a Lipschitz extension of F' to X by solving A u = 0,
it can be interpreted for image processing as an interpolation process. It can be used, for
example, to perform semisupervised segmentation, by interpolating some initial labels on the
whole image. It can also be used to perform inpainting, where the missing parts of the image
can be seen as the set X \ Y. We show some illustrations of these kinds of applications in
section 6.

4.3.1. Tug-of-War game. Let us briefly review the notion of the Tug-of-War game as
introduced by Peres et al. [46]. Let Q@ C R™ be a Euclidean space and g :  — R a function.
Furthermore, let € > 0 be fixed. The dynamics of the game are as follows. A token is placed
at an initial position xg € €. At the kth stage of the game, Player I and Player II select points
azé and xil, respectively, each belonging to a specified set B.(xp_1) C Q (where B.(xg_1) is
the e-ball centered in xj_1). The game token is then moved to a new position xj, where x
is determined by x; = azé with probability p = % (otherwise, x = azél ). In other words, a
fair coin is tossed to decide where the token is placed. After the kth stage of the game, if
xr € €2, then the game continues to stage k + 1. Otherwise, if xp € 02, the game ends and
Player II pays Player I the amount g(xy). Player I attempts to maximize the payoff while
Player II attempts to minimize it. According to the dynamics programming principle, the
value functions for Player I and Player II for a standard e-turn Tug-of-War game satisfy the
relation

€ _ 1 € : €
(4.22) Fla) =5 ngaé )f (y) +yer§1915r(1x)f (y)| on Q2

with f¢(x) = g(x) on 0f.
In [46] the authors show that for e — 0, f¢ — f, which is a solution of the following PDE:

(4.23) {Ag’;f(:v) -0, z€9,

flz) = g(z), x € 0N .

Using PDE (4.23), we show that the operator we propose enables us to recover the value
function of this game in the graph setting. Let G(V, E,w) be a Euclidean graph with V' =
QCR" E={(z,y) € VXV | w(x,y) > 0}, and

1 ifly—=z| <e,
4.24 w(z,y) =
( ) (@) {O otherwise ,
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and using the following relations, easily obtained from the definition of the £ norm of the
upwind gradients in (3.12), we get
max fw) = I(VEH@)e + f(z)

min f(y) = f(z) = [(Vy, /)@l -

Be(z)

(4.25)

By replacing max and min in (4.22) by their equivalent of (4.25), we get

VEN @)oo = (Ve f)(@)]lo] + f()
VA @)oo = (Vi ) (@)llso] -

(4.26)

NN =

For the case o = 3 = 0.5 the proposed operator in (4.1), which is in this context the infinity
Laplacian on graphs (3.23), coincides with the value function (4.22) of the Tug-of-War game:

(4.27) {Aoo,wf(fﬂ) =0, ze,

flx) = g(z), x € 0N .

4.4. Nonlocal Tug-of-War game. For a general Euclidean weighted graph and a = g =
0.5 one can see that the proposed operator in (4.1) is connected to the following nonlocal
Tug-of-War game. This is the same game as previously described, except that the e-ball is
replaced by a neighborhood N(zp_1) C  defined by

(4.28) N(zg—1) = {z € Q| w(z,z_1) >0} U {Tf_1}.

In this nonlocal variant of the game the game token is moved to a new position xj, where
is chosen arbitrarily in 2 such that z; = xi with the probability

w($k—17 ':U}g)

\/w(xk_l, zh) + \/w(xk_l, o)

(4.29) p =

and such that z; = x}g with a probability 1 — p. According to the dynamic programming
principle, the value functions for Player I and Player II for this game satisfy the relation

(4.30) Jnax w(z,y) (f(y) — f(x)) + min w(z,y)(fly) — f(x)) = 0,

which is in our context simply
(4.31) A wflx) = 0.

One can see here that the value function of the nonlocal Tug-of-War game can be found
by solving this nonlocal PdE-based on the newly proposed operator.
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4.5. Biased Tug-of-War. Finally, let us discuss a modified version of the Tug-of-War
game as follows. Let a > 0 and $ > 0. We can add bias to the tug-of-war game by using the
same game rules, but setting the probability to choose :Eé to p = «a and the probability for xil
as p = 5. When the game is optimal, according to the dynamic principle, the corresponding
value function is given by

) = @ max f(y)+ B8 min [ (y), reN,
(432 fo(=) [ foy)+ 5 min 5 (y)

f(z) = g(z), x €N .

This value function is related to the oco-Laplacian with gradient terms: ¢|Vu| 4+ Au(x) =0,
in which ¢ depends on the values of « and 3 [45].

This type of PDE and the related stochastic game were studied in [45]. Now, if we consider
a general Euclidean weighted graph, the probability to move the game token to :Eé is given by

Q w(xk—17$£)
(4.33) p = ,

ar/w(@g—1,2h) + ByJw(zg_1, zil)

and the probability for x; = :Eél is 1 — p. Following the same argumentation we get the

following relation for this game:

{Ewmf(:n) =0, x e,

(4.34)
flz) = g(z), x € 0.

5. PdEs based on the proposed operator. Recently, many nonlocal approaches have
been developed for image processing. These approaches are called nonlocal because any pixel
of the image can interact directly with any other pixel in the image domain, without the usual
restrictions to local interactions of a 4- or 8-neighborhood. Nonlocal models have been shown
to have great advantages over many traditional local models, since local smoothness is not
required for these approaches. They have also demonstrated their usefulness for geometric
and repetitive structures in images (such as textures). In our previous works we have shown
that the p-Laplacian-based regularization on graphs unifies both local and nonlocal diffusion
filters [9]. We have also shown that the transcription of PDE-based morphology on graphs
lead to nonlocal erosion and dilatation type filters [56].

In the following we study a nonlocal diffusion problem based on the proposed operator
in (4.1) and we show that the £, , time discretization unifies p-Laplacian and morphological
filtering. In particular this allows us to derive new filters that adaptatively combine both
diffusion and shock filters.

We also study a family of elliptic PdEs with Dirichlet boundary conditions based on the
proposed operator and prove the existence and uniqueness of respective solutions. The corre-
sponding equation represents a generalization of interpolation processes on discrete domains.

5.1. Nonlocal diffusion equation. Given a graph G(V,E,w) and a function f : V x
[0,T] — R, we consider the following diffusion equation for 2 < p < co:

{8fé—?’t> = Lopflut),

(5.1) flu,t=0) = fo(u),
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for which fy: V — R is the initial value of f at time ¢ = 0.
We discretize the derivative of f with respect to the time variable ¢ using an explicit Euler
scheme as

of(ut) _ ()= £ (u)
ot At

(5.2)

with f™(u) = f(u,nAt).

5.1.1. General case. We begin by studying the general case of a(u) # B(u) # 0, a # 0,
provide an iterative algorithm to solve the equation, and show some properties based on the
choice of p. To solve (5.1) we use the time discretization (5.2) in order to get the following
general iterative scheme:

(5.3) f W) = f(u) + ALy pf™(u) .

e For the case 2 < p < oo we get

(54) ) = )+ Atfa(@)[(VEM @I = B@) (Ve @) 5]

Here, one can see that we recover a general nonsymmetric averaging filter which inter-
polates between an iterative nonlocal morphological process and an average filtering
process driven by nonlocal means. We can further rewrite (5.4) as

P ) = fr) + Atfa(u) Y Awep(F)("(0) = £7(w)
(5.5) viu
W) Buwp(f)(F" (W) = ()]

1

with Ay p(f) = /wl,0)" " (f@)=F(W)P2, Buwp(f) =v/wl(uw0) " (F(u)—F@©)P2,
v u={v~ulf(v) > f(w)}, and v ~ u = {v ~ u|f(v) < f(u)}. All the coefficients
on the right-hand side are nonnegative if

1> At(a(u) Y Auwp(f") +Bw) > Buwp(f™) -

This inequality corresponds to the well-known CFL condition for the time step At.
This leads to maximum norm stability, and in fact to a maximum principle for this
approximation to (5.1). For the whole graph we get

(5.6) 1> Atmax( ZA“W’ (f") + B(u ZBuv,p fn)

ueV
UNU

Therefore, considering the upper bound of the right-hand term of (5.6), we get

1> Atma(N ()| max(|£() - F)P")



NONLOCAL DISCRETE p AND co-LAPLACE OPERATORS 2431

Based on the previous inequality we can determine the maximum for At as
1

max(| N (u)| max(|f(v) — f(u)[P~2))

ueV v~U

In order to make the proposed operator more interpretable, we introduce the two
following additional operators:

NLD,(f)(u) = f(u) + 7[(V5 (w1 L
NLE,(f)(u) = f(u) — 7[[(Vu ) @)|P7

for which 7 = At* and NLD,, NLE, : H(V') — H(V') represent nonlocal dilation and
nonlocal erosion, respectively. Since we have the identity ||(V.]f)(u)]] = [[(V—f) ()|
these two operators have the following useful property:

NLDy(—f) = —NLE(f),

NLE,(—f) = —NLD(f) .

(5.7) At =

(5.8)

(5.9)

Now we can set an iteration step of the scheme (5.5) as
(5.10) FrH(u) = NLA(f*)(w),
where N LA denotes nonlocal averaging defined by NLA,(f)(u) = a(u)NLD,(f)(u)+
B(w)NLE,(f)(u). If we use these formulation we finally get
NLAp(f)(w) = a(u)NLDy(f)(u) + Bu)NLE,(f)(u)
= a(f@ +7I(ViNH W)
+ B)(f(w) = 7II(Vu H )=
= (a(u) +B(w)f(u)
+ra()|[(VEN@IET = 8@ (Va)@)h-)
= f(w) +rla@I(VEN@ILTT — AwI(Vu) @] .

which corresponds to our iterative scheme (5.3).
e For the case p = 0o we can write

(512)  fHu) = f(u) + Atfa(@)[(VE) (W)lee = B[V f")(w)ls] -

As in the case 2 < p < oo discussed above, we get the following condition at a node u
to ensure stability of the scheme:

1 > At(a(u)yv/w(u,v) + Bu)y/w(u,v)

(5.11)

with

Vo

argfnax(\/w(u,v)f(v) — f(u)) and
vy = argmax(y/w(u,v)f(u) —

v~U
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Since the maximum value of the weighting function w is 1, and a(u) + B(u) = 1, we
simply get At < 1. Considering the iterative scheme (5.12) to be stable for At =1,
we define the two operators NLD, : H(V) — H(V) and NLE, : H(V) — H(V) as

NLDoo(f) () = f(u) + (Vi) ()]s ;

(5.13) NLEw(f)(u) = f(u) — (Vo f)w)lo -

Now we can rewrite an iteration of (5.12) as
(5.14) fr(u) = NLA(f")(u)
with NLAw : H(V) — H(V) defined as

NLAx(f)(u) = a(u)NLDoo(f)(u) + Bu)NLEs(f)(u)
(5.15) = a(uw)(f(u) + (Vi (W) + B)(f(u) = (Ve f)(u)llso)
= f(u) + a@) (Vi) (W)l — BV )W)l ,

which corresponds to our iterative scheme (5.12).

5.1.2. Special cases of filters. In this section we show that special cases of the iteration
scheme (5.4) permit us to recover nonlocal image processing filters we have introduced in our
previous works. Indeed, using the proposed p-Laplacian operator with gradient terms, we can
provide an interpretation of morphological operators as a family of nonlocal digital averaging
filters that can be expressed using the previously described iterative scheme.

e For the cases a(u) = 0 or 5(u) = 0 we recover filters related to PAE-based morphology:

(5.16) {afgft) = iH(Vif)(u,t)HZI} for 2<p< oo,
’ Of (u,
For 8(u) = 0 we get the following PdEs, which correspond to nonlocal discrete dilation
on graphs:
(5.17) 8%2’0 = H(V?,Sf)(u,t)llﬁj for2<p< o,
| UMD — (TEf) () forp=oo.
Expressed by the previously introduced operators N LD, we get the following iterative
scheme:
(5.18) fn+1(u) = NLD,(f")(u) for2<p<oo,
| [ () = NLDa(f")()  forp=oo.

For a(u) = 0 we get PdEs corresponding to nonlocal discrete erosion on graphs:

Of (ut) _ 1
(5.19) {—éﬂ — Vet fr2<p<oc,

UMD — (Ve £)(1 1) oo for p = o .
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Expressed by the previously introduced operators N LE,, we get the following iterative
scheme:

(5.20) {an(U) NLE,(f")(u) for 2 <p<oo,
i) = NLEo(f")(u)  forp=oo.

Note that for w(u,v) = 1V(u,v) € E, and p = oo, we recover the traditional discrete
morphological operators [11]—erosion for o = 0 and dilation for 8 = 0.

e For the special case a(u) = S(u) we can express (5.1) as

(5 21) % = Agu,pf(u) fOI' 2 S p < 0 ,
| W = Aw,OOf(u) for p =00 .

Using the iterative scheme (5.10) for 2 < p < oo we get
(5.22) frHi(u) = NLMp(f")(u)

for which the operator NLM, : H(V') — H(V) is defined as

NLMy(f)(u) = 5(NLDy(f)(w) + NLE(f))

(5.23) = f@) + Ve D@IET + I(VaH @)
= flu) + TAY f(u) |

and the maximum time step width 7 = At* from (5.7).
For the case p = co we derive the following iterative scheme:

(5.24) frHu) = NLMoo(f")(u) ,

where the operator NLMy, : H(V) — H(V) is defined as
NIMso(f)(w) = S(NLDso(f)) + NLEuo(/)

(5.25) = J) + S UTEN@ e ~ (T F)(w) )
= f(u) + Aw,oof(u) '

5.1.3. Properties. In the following we give important properties of the filtering process
(5.5) introduced above by rewriting the respective operators to matrices. Subsequently, we
show that the iterative scheme satisfies the minimum-maximum principle (MMP). Finally,
we demonstrate that convergence of the related diffusion process to a function f* leads to
Loypf(u)=0.

We begin by stating that for a given function f : V' — R the iteration process (5.10) can
be written as

(5.26) Frtl = ®(F™F",
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where F" = ( f”(u))zev € RY and ®(F™) is the matrix consisting of all coefficients with

respect to the weighting function, the parameters v and 3, and the vector F at iteration n.
It can be explicitly given by

1 — 7(a(u) Y Auzp(f*) + B(u) X Buzp(f)  ifu=nv,

+ —
zZ~ U zZ~ U

() Ay p(f) + B(u) Buwp(f7)) if v~

0 otherwise.

(5.27)  ®(F")(u,v) =

It is easy to show that the matrix ® has the following properties:
e The sum of every line of ® is equal to 1.
e The matrix is nonnegative: ®(F")(u,v) > 0¥(u,v) € E.
e Unless a(u) = B(u) ¥V u in V, the average value of f is not preserved.
Proposition 5.1. The iterative filtering scheme (5.10) satisfies the MMP.
Proof. Let m = minyecy (fo(u)) and M = maxy,cy (fo(u)). By definition we know that
the nonlocal operators NLE, and NLD, (see (5.8)) satisfy Vu e V

m < NLE,(f%)(u) < M,

(5:28) m ; NLD,(f%) (u) < M .

According to these inequalities, and recalling that the parameters a(u) + 8(u) = 1, we can
write Vu eV

(5.29) m < a(WNLE,(f%)(u) + B(u)NLD,(f°)(v) < M

and thus

(5.30) m < NLA(f°(u) < M.

Finally, by induction this relation can be extended to any subsequent time step n. |

We can conclude that the scheme (5.10) is stable and corresponds to a nonlocal filtering
process that combines dilation, erosion, and nonlocal mean. In case of a graph G = (V, E, w)
composed of N vertices and a function fy € H(V), a simple filtering process can then be
written using the following algorithm:

1. Vertices are ordered linearly. We have uq < ug < --+ < un.
2. The algorithm is initialized with 0 = fo.
3. For every k=1,...,N do f"(uy) = NLA,(f"(u)).

Proposition 5.2. If the iterative filtering process (5.10) converges to a function f*, then f*
satisfies Loy pf*(u) =0Vu e V.
Proof. Let f* be the limit of the iterative scheme (5.10). Then we have
fr(u) = NLA(f")(u)
(5.31) = () + @) [(VE) @L=1 = B@) (Ve £ @)p-1]
= 0 = 7Lypf"(u).

As the graphs we use are composed of a finite set of edges and 7 > 0 we can already deduce
that L, f*(u) = 0. [ |
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5.2. Dirichlet problem. In the following we focus on the Dirichlet problem associated to
the p-Laplacian with gradient terms £, ,f and show that this problem has a unique solution.
Broadly speaking, the Dirichlet problem is a boundary value problem of the following type:
find a function f € H(V') such that £, ,f = 0 on a set A C V, knowing the value of f on the
boundary 0A.

Let G = (V, E,w) a weighted and connected graph, A C V a set of vertices, and g : 04 —
R a function defined on the boundary of A. We consider the following equation that describes
the Dirichlet problem associated to our newly introduced nonlocal Laplacian operator:

(5.32) {Ew,pf(u) =0 forue A,

flu) = g(u) foru e 0A .

Many problems in image processing and machine learning can be formulated as this kind of
interpolation problem. In this part we will only study the case 2 < p < 0o as the case p = 0o
has already been studied in our work in [21].

5.2.1. Proof of existence and uniqueness.
Theorem 5.3. Given a graph G = (V,E,w), a set A C V, and a function g : 0A — R,
there exists a unique function f € H(V') such that f verifies the following equation:

(5.33) {a<u>|r<wf><u>u§:i—ﬁ<u>u<v;f><u>ug:; _ 0 forucA.
flu) = g(u) foru e dA .

Proof. First, we note that (5.33) can be rewritten as f(u) = Ly pf(u). We will begin by
proving the uniqueness of respective solutions by using the comparison principle. Given two
functions f and h, we will prove that if f = £y, ,f and h = L, ,h with f < h on A, then,
f < h on the whole domain V. In order to deduce a contradiction, we assume that there
exists an M € R such that

M = sup(f—h) > 0.
\%

Let B={ue€ A: f(u) — h(u) = M}. By construction we have B # () and BN 9A = (). We
claim that there exists ug € B and v € N(up), such that v ¢ B. Otherwise, if for each u € A
and for each v € N(u) we have v ¢ B, then this implies that B N JA # (), since the graph is
connected and thus we have a contradiction.

Then, from the definition of M we have

h(
h(

h(u) Vu € N(ug) ,

(u) = h(u
f(ug) Yu € N(ug) .

— fu) —
- flu) =

Uo
Uo

In particular we can write

h(v) — h(ug) > f(v)— f(uo) -
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From these inequalities, we can deduce
(5.34)
max(h(u) — h(uo),0) > max(f(u)— f(uo),0),
(v w(uo, w) max( h(uo),0))” = (v w(uo, u) max(f(u) — f(uo),0))",
h(ug),0))? >

a(u) D (v/w(ug, u) max( )P > afug) Y (v/w(ug, u) max(f(u) — f(uo),0))?,

u~uUQ u~uQ

a(uo) (Vo h) (wo) [l > ax(uo)[|(V ) (wo) 15

h(u 0)
h 0)

—~

)_
)_

u

and analogously

h(uo) — h(u) < f(uo) — f(u),
max(h(u) — h(up),0) > max(f(u) — f(ug),0),

(535) 2 (Vwluo,w max(huo) = h(w),0))” < 3 (vw(uo,u) max(f (uo) = f(u),0))"

u~uUQ u~uUQ

1(Vah) (uo)lly < (Ve ) (o),
=B (uo) [V h) (o)l > =B(uo) [(V £) (uo)[[5-

The previous inequalities are strict inequalities because we know there exists a v € N (ug)
such that h(v) — h(ug) > f(v) — f(uo). Using the relations (5.34) and (5.35) we can deduce
the following inequality:

a(ug)|[(Vi ) (uo) |5 — Buo) [|(V i h) (uo) || > a(uo) [ (Vo £) (uo) IIf — B(uo) (Ve ) (wo) |15,
Loy ph(uo) > L pf(uo),
0>0.

This clearly leads to a contradiction and concludes the proof of uniqueness.

For the proof of existence of respective solutions we recall the Brouwer fixed point theorem.
It states that a continuous function defined on a convex, compact subset of a Euclidean space
which maps into the same subset has a fixed point. We identify H (V) as R™ and consider
the set K = {f € H(V) | f(u) = g(u) Vu € 0A, and m < f(u) < M Yu € A}, where
m = ming4 (g(u)) and M = maxga (g(u)) By definition, K is a convex and a compact subset
of R". Now, it is easy to show that the map f — NLA, ( f ) is continuous and maps from K
to K. Using the Brouwer fixed point theorem we can deduce that the map NLA, has a fixed
point, which is the solution of NLA, ( f ) = f. This completes the proof. |

6. Applications to inverse problems on weighted graphs. In the following we apply the
newly proposed nonlocal p-Laplacian with gradient terms on different inverse problems such
as function restoration or interpolation on graphs. Note that in this section it is not our
alm to compare our approach to state-of-the-art methods with respect to its performance in
particular applications but rather to illustrate the potential of this universal formulation. In
particular, we will investigate the impact of different parameter choices for v and .

6.1. Graph construction. There exist several popular methods to transform discrete data
{z1,...,2,} into a weighted graph structure. Considering a set of vertices V such that the
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data are embedded by functions of H(V'), the construction of such a graph consists in modeling
the neighborhood relationships between the data through the definition of a set of edges F
and using a pairwise distance measure p : V x V — RT. In the particular case of images,
graph construction methods based on geometric neighborhoods are particularly well-adapted
to represent the geometry of the space, as well as the geometry of the function defined on that
space. We distinguish the following types of graphs:

e Grid graphs, which are the most natural structures to describe an image with a graph.
Each pixel is connected by an edge to its adjacent pixels. Classical grid graphs are
4-adjacency grid graphs and 8-adjacency grid graphs. Larger adjacency can be used
to obtain nonlocal grid graphs.

e Region adjacency graphs (RAGs), which provide very useful ways of describing the
structure of a picture: vertices represent regions and edges represent region adjacency
relationship.

e k-nearest neighborhood graphs (k-NNGs), where each vertex u is connected with its
k-nearest neighbors according to the distance measure p. Such construction implies
building a directed graph as the neighborhood relationship is not symmetric. Never-
theless, an undirected graph can be obtained by adding an edge between two vertices
u and v if v is among the k-nearest neighbors of v or if v is among the k-nearest
neighbors of w.

o k-extended RAGs (k-ERAGs), which are RAGs extended by a k-NNG. Each vertex is
connected to adjacent regions vertices and to its k most similar vertices of V.

The similarity between two vertices is computed with respect to an appropriate measure
s: F — RT, which satisfies

(. ) s(u,v) if (u,v) € £,
w(u,v) =
0 otherwise .

FExamples for common similarity functions are as follows:

so(u,v) =1,

exp(—u(fo(u),fo(v))/02> with ¢ >0,

s1(u,v)

for which o depends on the variation of the function p and controls the similarity scale.

Several choices can be considered as feature vectors computed from the given data, de-
pending on the nature of the features to be used for graph processing. In the context of image
processing one can use the simple grayscale or color feature vector F),, or a patch feature
vector £y = U, epyr () Fo (ie., the set of values F,, where v is in a square window W (u) of
size (27 + 1) x (27 + 1) centered at a vertex pixel u) incorporating nonlocal features such as
texture.

6.2. Image restoration and simplification. We begin by demonstrating the diffusion pro-
cess based on the p-Laplacian with gradient terms for filtering real image data, defined both
on two-dimensional regular grids and three-dimensional (3D) point clouds.

An image of N pixels can be interpreted as a discrete function fy : V' — RM | which defines
a mapping from the vertices to the color space of dimension M. Figure 1 shows exemplary
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results obtained for different graph constructions (local and nonlocal), built from an original
noisy image, and different values of the parameters a and 3. The first column shows the results
obtained on an 8-adjacency grid graph for w = sy, while the second column uses w = s1. In
both cases u is chosen as the Euclidean distance in the color space of the image. The third
column shows results obtained for a nonlocal graph, using a 15 x 15 neighborhood window
and 5 x 5 patches as features vector (the weight function holds similarily between patches,
with w = s and pu is the Euclidean distance between patches). Note that the first and third
rows show results for o = = 0.5, which corresponds to the anisotropic p-Laplacian diffusion
process (5.22) and (5.24) (for the cases p = 2 and p = oo, respectively).

Adaptive p-Laplacian diffusion and morphological smoothing. In the following we
propose to take advantage of the o and [ functions to obtain an optimal trade-off between the
diffusion part and morphological smoothing, depending on the mean curvature of the graph.
For this, we recall the definition of the mean curvature on graphs as introduced in [14]:

e S Vol O ()  f(u)
(o vl f) > ulu0) ’

where the sign function is defined as

1 ifz>0
6.2 sign(z) = =
(6.2) gn(®) {—1 ifr<0,

which can be rewritten as

2vefulf@)=fw} VO v) = Xt sy« Vwlu,v) .
Z’UNU V w(u7 ,U)
In order to fulfill the constraint a(u) + S(u) = 1, we adapted this formulation so that the

« values represent the positive part of the curvature and the 3 values the negative part, which
leads to

(63) R (u7 f) =

D vefol )z fu)y VWU, v)

6.4 ) —
o N SR )

and

(6.5) Blu) = Zvetulf)<say VO )

2 v V0 (15 0)

Let us rewrite the diffusion process (5.1) by using (4.2) and (6.1):

) - 2 min(a(u), B(u)) A p f (1)

+ (K, )TV ()21
— (ko (u, 1)) IV @)P71,
flut=0)=folu)

K (U
6.6
(6.6) o
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noisy image

Local Local + weight  Nonlocal + weight

0.5, p=2

=B =

2 «

oo dynamic «, 3, p =

=0.5,p=

=/

=0

dynamic «, 8, p

Figure 1. [llustration of the effect of the proposed p-Laplacian with gradient terms for image filtering.
The three columns represent different graph constructions, i.e., a four-grid graph with w = so for the first
column, a four-grid graph with w = s1 using color similarity for the second column, and a k-nn graph using
patch similarity for the third column. The first and third rows show the effect of using o = 8 = 0.5, which
corresponds to the anisotropic p-Laplacian on graphs. The second and fourth rows show adaptive o and [ values

based on the mean curvature of the graphs.
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For ky(u, f) > 0 we get
Of (u,t)

(6.7) S = 288w, f )+ (u HIVEN @7
For Ky (u, f) < 0 we have

(6.8) T o) ) uon, )V DY) S
And finally for ky,(u, f) = 0 we get

(6.9 T At

This enables us to adjust the filtering process adaptively between erosion and dilation, based
on the data mean curvature, which allows us to combine smoothing (with the Laplacian term)
and shock filtering (with either dilation or erosion) in the same formulation. Results using the
dynamic adaptation of a and § for image filtering are shown in the second and fourth rows
of Figure 1 for p = 2 and p = oo, respectively.

Another illustration is given in Figure 2, which shows several results obtained on a 3D
point cloud with different values of the parameters « and . This application uses a non-
Euclidean graph built as a k—nn graph from the set Q C R? of points of a given 3D point
cloud. The first and second columns show the results obtained from a spatial k-nn graph
construction, with w = s¢ for the first column and w = s; for the second one. In both cases
is the Euclidean distance between the color information of each point. In the third column we
built a graph using the patches on 3D point cloud data as proposed in our work in [37]. The
first row shows results for a = 8 = 0.5 with p = 2, which corresponds to a nonlocal diffusion
process (5.22). The second row shows results with « and f values depending on the graph
curvature, with p = 2, which corresponds to a combination of smoothing and shock filtering,
described in (6.6).

Figure 3 shows the morphological processes we can recover using either o = 0 in the
first and third rows (corresponding to the erosion process described in (5.20)) or 8 = 0 in
the second and fourth rows (corresponding to the dilation process described in (5.18)). On
the first two rows we show the effect of using the proposed operator on a grid graph with
w(u,v) = 1. One can see that we recover the effects of classical erosion and dilation. In the
third and fourth rows we use a weighted grid graph with w = s1. As one can see this enables
us to perform erosion and dilation while preserving certain details in the image.

6.3. Interpolation. Many tasks in image processing, computer vision, and machine learn-
ing can be formulated as interpolation problems. Image and video colorization, inpainting,
and semisupervised segmentation/clustering are examples of these interpolation problems. In-
terpolating data consists in constructing new values for missing data in coherence with a set
of known data. In this paper we propose to use the new p-Laplacian with gradient terms
as a unified framework for the solution for both semisupervised segmentation/clustering and
image inpainting. In this context we solve the following Dirichlet problem:

{zw,p(f) u) = 0 for u € Vy ,

(
(6.10) Fu) = g(u) ueV -V =0V,
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k-nn, w =1 k-nn 4+ patch similarity

dynamic «

Figure 2. Colored 3D point cloud simplification for different weighting functions and p = 2. The graph is
built as a k-nn graph in the 3D coordinates space. The second row shows the results using o = 8 = 0.5, which
corresponds to anisotropic reqularization based on the anisotropic 2-Laplacian. In the third row we show results
using o and 8 depending on the mean curvature of the graph.

where Vp C V is the subset of vertices representing the missing information. The initial value
function ¢ is application-dependent and will be discussed in more detail for each application
in the following.
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10 iterations 20 iterations 50 iterations

Figure 3. Illustration of different numbers of iterations during morphological processes using different
values of a and B for different local graph constructions and p = 2. See text for more details.

6.3.1. Active contours, semisupervised segmentation, and classification. In the case
of semisupervised image segmentation, graph-based approaches have became very popular
in recent years. Many graph-based algorithms for image segmentation have been proposed,
such as graph-cuts [10], random walker [29], shortest-paths [5, 25], watershed [8, 17, 58], or
frameworks, that unify some of the previous methods (such as power-watershed) [16, 52].
Recently, these algorithms were all placed into a common framework [16] that allows them
to be seen as special cases of a single general semisupervised algorithm. Several popular
approaches [5, 17, 18, 25, 39| perform graph clustering by computing a graph partition from
the set of user’s seeds and a metric. We refer interested readers to [18] for more details.

In this paper we propose to consider this particular problem in two different ways. First,
we deal with an interpolation problem, where the function to interpolate is the label function.
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Using (6.10) and considering two classes A and B, the initial value label function ¢ is defined
as follows:

glu) = —1 ifue A,
(6.11) glu) =1 ifue B,
glu) =0 otherwise.

At convergence the class membership can be easily computed by a simple threshold on the
sign of f.

Remark. In the case of more than two classes, multiclasses segmentation can be performed
by several segmentations of one class versus the others.

Second, we consider segmentation by curve evolution processes in which the segmentation
is implicitly represented by the zero level set of an appropriate function, partitioning the graph
into two sets. To adapt this idea to our formulation we first define the initial level set function
¢o for two vertex sets A and B with AU B =V as

(6.12) {cﬁo(U) = -1 | ifueA,
po(u) =1 ifueB.

The curve evolution process can now be given as

(6.13) {% = Lup(9)(w),
b(u,0) = olu) .

Active contours. To formulate an active contours algorithm on graphs to perform curve
evolution we used (6.13) and adaptively set the o and [ values as the mean curvature of the
graph. Figure 4 presents a result of the active contour method based on the mean curvature.
The graph is built as an augmented adjacency graph, i.e., we first compute a grid graph, then
we add a certain amount of randomly chosen neighbors in the window around the considered
pixel. The weight function depends on the similarity between pixel color information. This
allows us to get a nonlocal graph without adding too many edges while keeping its size
relatively small.

Interactive image segmentation. In the following we investigate label interpolation for
semisupervised image segmentation. In this case the graph is the same graph as for the active
contour method discussed above, and the weighting function depends again on the similarity
between pixel colors. The function fp : V' — R to be interpolated is initialized according to
user-defined seeds, as presented in (6.11). Figure 5 presents the initial image with user-defined
seeds (blue and green) and the result of interpolation for p = 2, with a = f3, recovering the
anisotropic Laplacian Ay, 2 (4.3), and w = s;.

RAG segmentation. In the following we discuss label interpolation for semisupervised
image segmentation using RAGs. This illustrates the adaptivity of the proposed approach
to process irregular graphs and an efficient way to extract similar but not connected objects
with only a few seeds. In this case, the graph is a RAG built from the initial image using
the super vertices approach presented in [18], which is extended with a k-nn graph in order
to add supplementary edges between each region and its k£ most similar regions in the whole
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initials contours 10 iterations

40 iterations convergence

Figure 4. Illustration of different iterations of the active contour algorithm based on mean curvature of the
graph using the proposed p-Laplacian with gradient terms for p = 2. The first image (on the top left) shows
the initial contour, and, from top left to bottom right, the images demonstrate different steps of the contour
evolution until convergence.

image (in the sense of the mean color similarity). The main advantages of these graphs
are, first, the efficiency of the approach as we work on a reduced version of the image and,
second, the additional edges that allow us to connect unconnected objects in the natural
image representation. The weighting function depends on the similarity between vertex colors
(according to the image). The function fo: V' — R to be interpolated is initialized according
to user-defined seeds (as presented in (6.11)). Figure 6 presents the initial image with user-
defined seeds (red and green), the RAG, and the result of interpolation with the parameters
a = 3, p = 2 (recovering the anisotropic Laplacian A, > (4.3)), and w = s;.
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Figure 5. [llustration of interactive image segmentation using the proposed p-Laplacian with gradient terms
for p=2. The left image shows the original image image with superposed initial labels. The image on the right
shows the result of the label diffusion.

Figure 6. Semisupervised image segmentation using a RAG. The segmentation is performed on a high-level
graph: the RAG built from the initial image, extended with additional edges in order to connect similar but not
adjacent regions. This construction enables us to diffuse labels through nonconnected objects (e.g., the flowers
in the image).

Real data clustering. In this paragraph we discuss label interpolation using (6.10)
for real data clustering. The data is a set of 200 digits (zeros and ones) from the USPS
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database [32] that we want to cluster in two classes (zeros versus ones). To simplify the graph
construction we consider each digit as a one-dimensional vector of 256 gray values, and the
metric between the digits is a simple Euclidean distance. Then, the data are represented as a
k-nn graph on which the clustering is processed for user-defined seeds (one per class). Figure 7
illustrates the graph with initial user-defined seeds and the resulting clustering, using p = oo,
a = 3 (recovering the co-Laplacian A, ), and w = s.

Seeds Result

Figure 7. Semisupervised data clustering for two classes on data picked from the USPS database (0’s and
17s). The left image shows the graph with initial user-defined seeds, and the right image shows the result of the
clustering.

image image + mask reconstructed reconstructed
image local image nonlocal

Figure 8. Natural image inpainting in local and nonlocal configurations. The third column presents results
with a local 8-adjacency graph. The fourth column presents nonlocal results using a 31 x 31 neighborhood window
and 15 x 15 patches.
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original

a=0=05p=00 a=0,=1,p= a=1,=0,p=o00

Figure 9. [llustration of color inpainting on a 3D point cloud. Results are computed in the case o = 8 = 0.5
forp=2,anda=0,=1,a=1, =0 forp=cc.

6.3.2. Nonlocal image inpainting. Digital inpainting is a fundamental problem in im-
age processing and has many applications in different fields. It can be simply summarized
as reconstructing a damaged or incomplete image by filling the missing information in the
incomplete regions. In recent years many methods have been developed for interpolating the
geometry, the texture, or both geometry and texture. Among the interpolation methods that
have been proposed, a number of methods are based on PDEs or variational methods; see
[3, 49] and reference therein. Since the work of [12] on nonlocal filtering, many nonlocal meth-
ods for image inpainting have gained considerable attention in recent years. This is in part
due to their superior performance in textured images, which represent a well-known weakness
of purely local methods.

Recent works aim to unify local and nonlocal interpolation approaches [27]. A variational
framework for nonlocal image inpainting has been presented in [3]. A discrete nonlocal reg-
ularization framework for image and manifold processing has been proposed in [26]. This
framework has been used to present a unifying approach of local geometric methods and non-
local exemplar-based ones for video inpainting. Considering (6.10) the inpainting problem can
be formulated as follows: Vj is the set of pixels with missing information, while g : V- — H(V)
represents the known information and f : V' — H(V) is the image to be reconstructed. This
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is illustrated in Figure 8 on natural images with o = 8 = 0.5 and p = 2 which corresponds to
Ay 2. The graph is either a local one with an 8-adjacency neighborhood (third column) or a
nonlocal graph built using a 31 x 31 neighborhood window and 15 x 15 patches with patch
similarity as a weighting function (fourth column).

Figure 9 illustrates results of graph inpainting for 3D point cloud color reconstruction.
In this case, the graph is built as a nonlocal graph from the point cloud using the definition
of patches on point cloud proposed by [36]. The function f to be interpolated associates a
color vector to each vertex of the graph. Once the graph is built the problem is formulated
in the same way as for the previous example of image inpainting. Results are presented for
a = f = 0.5, p =2, corresponding to Ay 2; a« = 8 = 0.5, p = 00, corresponding to Ay oo;
a = 0, p = oo corresponding to an erosion process; and o = 1, p = oo, corresponding to a
dilation process.

7. Conclusion. In this paper, we have presented an overview of different versions of the
Laplace operator in the continuous setting, i.e., the p-Laplacian and oo-Laplacian and its
related variants, the game p-Laplacian, and the nonlocal p-Laplacian. Subsequently we dis-
cussed how to translate these operators on graphs using our previous works on this topic.
We then proposed a novel class of p-Laplacians and oo-Laplacians on graphs, which can be
expressed as a convex interpolation between two discrete upwind gradient terms, unifying
our previous works on PdEs on graphs as a single operator. We have shown that an inter-
esting feature of this representation is the fact that the respective steering parameters can
be chosen data-dependent, which leads to adaptive filtering effects (nonlocal diffusion and
morphological filtering) in different regions of the same data. We discussed the connection to
local and nonlocal PDEs and a model from stochastic game theory known as the Tug-of-War
game and showed that our proposed formulation, using p = oo, leads to PdEs which coincide
with value functions of different Tug-of-War games. We also applied this novel class of the
p-Laplacian and oo-Laplacian on two PdEs on weighted graphs, a parabolic equation, and an
elliptic one using Dirichlet boundary conditions and proved important mathematical proper-
ties, e.g., existence and uniqueness of solutions. We have shown that the parabolic equation
leads to a generalization of diffusion and mathematical morphology on graphs and that the el-
liptic PdEs with Dirichlet boundary conditions generalizes interpolation processes on discrete
domains. Finally, we illustrated how this new class of p-Laplacians and oo-Laplacians with
gradient terms can be applied in many examples, i.e., segmentation, denoising, inpainting,
and clustering. To underline the universal applicability of the proposed formulation we tested
our algorithms on a wide range of data, i.e., classical images, triangulated meshes, and even
unorganized data such as point clouds or databases.
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