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Abstract. Minimal surface problems play an important role not only in
physics or biology but also in mathematical signal and image processing.
Although the computation of respective solutions is well-investigated in
the setting of discrete images, only little attention has been payed to more
complicated data, e.g., surfaces represented as meshes or point clouds.
In this work we introduce a novel family of discrete total variation semi-
norms for weighted graphs based on the upwind gradient and incorporate
them into an efficient minimization algorithm to perform total variation
denoising on graphs. Furthermore, we demonstrate how to utilize the
latter algorithm to uniquely solve minimal surface problems on graphs.
To show the universal applicability of this approach, we illustrate results
from filtering and segmentation of 3D point cloud data.
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1 Introduction

Variational models and partial differential equation-based (PDE) methods are a
fundamental tool in mathematical image processing and computer vision. The
respective mathematical theory is well-understood and allows for important con-
clusions, e.g., existence and uniqueness of solutions. Traditionally, algorithms
from this field are investigated and applied in the domain of Euclidean spaces.
However, in many physical and biological contexts there exist problems involving
PDEs on more complex and irregular domains. In particular, due to the technical
advances in producing affordable 3D sensors in the past few years more and more
applications are related to data defined on polygonal surfaces and point clouds.
In general, the study of variational methods and PDEs needs significantly more
effort in these cases. Moreover, in the case of point clouds the data is directly
sampled from the underlying surface. Since there is a-priori no connectivity of
these points provided this leads to additional problems in processing these data.

Today, variational problems and PDEs on surfaces can be tackled by one of
the following techniques. First, there are methods which approximate surfaces by
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polygonal meshes and locally parametrize them by suitable functions, e.g., finite
element methods [10]. Another possibility is to implicitly represent surfaces as
level sets of a Lipschitz continuous function on Euclidean domains and use level
set methods to solve PDEs [2]. Another example is the closest point method
proposed in [16], which replaces surface differentials with Cartesian differentials
of its closest point extension. Recently, discrete differential geometry on surfaces
[3,13] gained increased attention, especially in computer graphics. While most
of these methods do not immediately extend to arbitrary point cloud data, they
could generally be used if these data were reconstructed into suitable surface
representations - a process that can be very complex and cost-intensive in terms
of computational effort. For a discussion of these different techniques with their
advantages and disadvantages, see e.g., [13,14].

In this work we focus on the well-known minimal surface problem, see e.g.,
[9,18] and references therein. Deviating from the techniques discussed above,
we perform discrete calculus on surfaces using graph-based representations |1,
11,12, 14|. Based on our previous work in [14] we represent the given data as a
graph and use the proposed framework in [11] to transfer differential operators to
graphs. We are able to solve minimal surface problems for meshes and arbitrary
point clouds in a unified manner using this relatively simple approach.

1.1 Motivation

The minimal surface problem [5,8] consists of finding a subset X of an open,
bounded domain {2 C R™, which partitions {2 according to some external energy
g: 2 — R while having a minimal surface I" C {2 with respect to an adequate
measure. Denoting this measure of the surface of X' in {2 by Per(X; §2) one can
formulate the minimal surface problem as follows:

For a fixed A > 0 and z € R find a minimizing set X' C {2 of the energy
E(X) = Per(X;02) + /\/ z—g(x)de . M)
=
Here, A is a regularization parameter controlling the smoothness of I". Solutions
of the problem (1) are not unique as the problem is non-convex [8].

There exist various tasks in signal processing which can be associated to the
minimal surface problem. To the best of our knowledge a unified manner for
computing local and nonlocal minimal surface solutions on graphs has not been
investigated so far. To motivate our work we discuss three examples from the
literature. First, given an image f: {2 — R and setting the external energy to
g(x) = f(x), then solving (1) will perform a segmentation of f according to a
threshold induced by z € R. Decreasing the parameter A enforces regularity of
the segmentation surface and thus makes the segmentation more robust to noise
and outliers, e.g., see [18]. A second example is given by the popular Chan-Vese
segmentation method in [8]. Based on an initial guess of a partition X' C (2, the
authors compute two mean values ¢, co € R of the image regions of f induced by
X, Subsequently, the Chan-Vese method performs the actual segmentation step
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by setting z = 0 and g(x) = (f(2)—c1)?—(f(x)—c2)? and solving (1). In fact, this
clusters the image values according to the estimated cluster centers ¢; and cs.
Another problem is the computation of the mean curvature flow. As the authors
in [5] discuss, given an initial surface I" of X and setting z = 0 and g(z) = dp(x)
as the signed Euclidean distance of a point = to I', one approximates the mean
curvature flow of I" by computing a sequence of solutions to (1). This is especially
interesting for modeling surface evolution in physics or biology.

1.2 Contributions

Our aim in this paper is to establish a unified method to solve various important
tasks from image and data processing which can be formulated as minimal sur-
face problems on data with arbitrary topology, such as point clouds. First, based
on the notion of discrete total variation on graphs we introduce a new family of
total variation seminorms based on the upwind gradient operator. We give two
important relationships, namely the discrete corarea formula for graphs and a
link between minimal surface problems and the popular ROF denoising model.
Finally, we give an efficient iterative scheme to uniquely solve minimal surface
problems on graphs. The advantage of this approach is that it is universally ap-
plicable for various tasks, such as total variation denoising, segmentation, data
clustering, or computation of the mean curvature flow.

2 Methods

We start with the basic notation and mathematical basics of finite weighted
graphs and give the definition of weighted finite differences for the latter. Sub-
sequently, we formulate the notion of the discrete total variation of a function
defined on graph vertices in Section 2.1 and introduce a novel family of discrete
total variation seminorms based on the upwind gradient operator. For certain
special cases of these seminorms we are able to prove a proposition in Section
2.2 which corresponds to the coarea formula in the continuous setting. Based
on this, we give an important relationship on weighted graphs between total
variation denoising problems and the minimal surface problem.

Let G = (V, &, w) be a weighted graph without loops and self-referencing, for
which w: ¥V x V — RT is a weighting function depending on the interactions of
the vertices in the finite set ¥V = {x1,...,xn} given by the edge set £ C V x V.
In the following we assume that the weighting function w is symmetric and
hence G is an undirected graph. We denote by H (V) the Hilbert space of real-
valued functions on the vertices of the graph and by H(€) the Hilbert space of
real-valued functions on the graph edges. For f € H (V) we define the p-norm as:

1/p
fllp = (Z |f(xz')|p> y1<p<oo and |flle = max|f(z:)] . (2)

z; €V
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Following [11], we introduce weighted finite differences d,,: H(V) — H(E) by:

(dwf)(@i x5) = \Jw(zs,z;)(f(x;) — fz) (3)
and for H € H(E) one is able to give the adjoint operator df,: H(E) — H(V) as,
(A H) (@) = Y \Jwlws, ) (H(xj,2:) — H(zs,z))) - (4)

We define a weighted gradient operator V,, of a function f € H(V) as
(Vo)) = ((duf)(@0,25))z,ev » (5)

Based on the difference operator in (3) one can additionally get weighted upwind
differences similar to upwind discretization schemes, e.g., see [14], by:

(dop f) (@i, 25) = max(0, (duw f)(zs, ;7)) ,
(dy)(@iz;) = min(0, (dwf)(2i 7)) = —max(0, (dw f)(2), 1)) -

Based on these weighted upwind difference one gets the discrete upwind weighted
gradient operators V;, and V,, analogously to (5).

(6)

2.1 Discrete total variation for graphs

Based on the gradient operator of a function f € H(V) introduced in (5) one
can introduce a measure of the discrete total variation (TV) of f on a weighted
graph G. For this we define a family of discrete total variation seminorms as:

1/p
1 lleve = D (V) @)l = D D 1 duf)@snz)P |, 1< p <o,
z; €V T, €V \ T~ (7)
1fll7vee = D (V) @)lleo = D max |(dw f) (s, 25)| p=oo0.

z; €V €V

Inspired by the definition of a discrete upwind total variation seminorm by the
authors in [6], we introduce a novel family of TV seminorms on graphs based on
the weighted upwind differences in (6),

1/p

1 lFve = D NVEN @I = D | Do b))l

T, €V T, €V \T;~T;

1/p

=3 S i) max(0, f(ay) — fa)P | L 1<p<oo,

T;EV \T;~T;

1 voo = DNVEN @)oo = 3 max |(d5 1) i, z5)]

z;, €V x; GV
= > max (W | max(0, f(z) — f(mi>>|) , p=oo.
z; €V J ’
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Using the definition of the weighted upwind differences d, in (6), we introduce
analogously a novel family of TV seminorms || - |7y, and || - [|7y - Finally, we
are also interested in a discrete total variation seminorm of the form:

v = 5 3 MA@ + (Vo) @il )
z; €V

Given a subset of vertices A C V of a weighted graph G, we define a family of
perimeters of A as the total variation (see Section 2.1) of its respective indicator
function y 4 for 1 < p < oo:

1 1
Pery(A4;V) = =|lxallrve = = D I(Vexa) (@)l 1 <p<oo,
p p;ciEV (10)
Peroo (A V) = Ixallrviee = D (Vaxa) @)l ,  p=o0.
z; €V

For the novel family of total variation seminorms on graphs in (8) we can
analogously introduce families of perimeters as: Perl (A4;)) = 2—1p||x A||JTFV’OO,

Per_ (A; V) = ﬁHXAH%v,oov and for (9) we obtain Per® (A;V) = |\X,4||%V700.

2.2 The coarea formula and total variation denoising

Based on the introduced families of perimeters of subsets of vertices above we
can formulate the minimal surface problem (1) for a weighted graph G as follows:

For a fixed A > 0 and z € R find a minimizing set of vertices A C V of
E(A) = Per(4;V) + A Y 2 —g(z), (11)

z, €A

for which Per(.A4;V) is one of the perimeters introduced in Section 2.1. Equiva-
lently, the minimization problem (11) can be reformulated in terms of the char-
acteristic function x4 of the subset A as:

For a fixed A > 0 and z € R find an optimal function x4 € Z(V) of

E(xa) = Ixallrv + A Y xal@)z —g@)), (12
z, €V
for which || - ||y is one of the total variation seminorms on graphs introduced

in Section 2.1 and Z(V) C H(V) is the subset of indicator functions, which
only take the values 0 and 1. As gets clear, the minimization problem (12)
(and thus also (11)) is nonconvex, as the admissible set of functions in Z(V)
is nonconvex [8]. There exist different approaches to solve the discrete minimal
surface problem. One popular approach is known as exact convex relaxation and
performs optimization on a subset of functions which are bounded by the interval
[0,1] and subsequently perform thresholding, see [§] for details.
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However, we refrain from using this approach for two reasons. First, we want
to compute minimal surface solutions on graphs which can be used for different
important image processing tasks, such as filtering and segmentation. Thus, we
need a framework which covers these applications in a unified manner, which is
not possible with the exact convex relaxation approach discussed above. Second,
the latter method gives no conclusions about uniqueness of solutions, which is a
desirable property in image and data processing.

In the case of images the approach in [4] exploits a useful relationship between
minimal surface problems and the well-known Rudin-Osher-Fatemi (ROF) total
variation denoising problem in [17]. This relationship is based on the coarea
formula. Thus, we formulate the discrete coarea formula on graphs for certain
families of the discrete TV seminorms introduced in Section 2.1. Note that these
relationships can also be found in [1].

Proposition 1 (Coarea formula for graphs)

Let u € H(V) be a vertex function of a weighted graph G. Then in cases of the
discrete TV seminorms given by p = 1 and x € { ,+,—} as in (9) the coarea
formula for graphs holds:

lallrvs = [ husnllivs de= [ Perf (fa € Vi ua) > thv) e (1)
oo o)

Proof. The proof is based on the definition of the discrete TV seminorms in Sec-
tion 2.1 and the two identities a —b = ffooo X{b>t} — X{a>¢} dt and max(0, u(z;) —
u(x;)) = —min(0, u(x;) — u(x;)) as given in (6) for vertices x;,xz; € V.

Remark 1 In the case of unweighted graphs, i.e., w = ¢ € R, the coarea formula
(13) holds true for the discrete TV seminorm || - ||1v,co, and also for the total
variation seminorm || - H%Vm in (9). This is of particular interest in the special

case of traditional image processing with the weighting function w = h%

Following [4, Prop. 2.7] one can derive a useful relationship between the discrete
minimal surface problem on graphs (12) and the ROF denoising problem.

Proposition 2 (Solving minimal surface problems by TV denoising)
Let G be a graph, A > 0 a fived parameter, g € H(V), and 4 € H(V) the unique
solution of the discrete ROF total variation denoising functional,

A 2
min = [ju — g|2 + : 14
ue7-ltr(1v) B lu = gllz [[ul|rv (14)
for which || - ||Tv is one of the introduced discrete TV seminorms in Section 2.1

that fulfill the coarea formula in Proposition 1.
Then, for almost every z € R, the indicator function x € H(V) with

(@) = {1, if a(x) > z,

15
0, else, (15)

is a solution of the discrete minimal surface problem (12). In particular, for all
z but a countable set, the solution is even unique.
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Proof. The proof of this proposition is based on the coarea formula in Proposition
1 and follows directly the proof in [4, Prop. 2.7].

In summary Proposition 2 states that one can obtain a unique solution of the
discrete minimal surface problem by solving an associated strictly convex TV
denoising problem and perform a single thresholding step afterwards. Hence, this
basically reduces the solution of the minimization problem (12) (and thus also of
(11)) to solving the ROF model (14) on graphs. Note that by this one can solve
various important problems in image and data processing not only in a unified
manner, but also very efficiently. We discuss this in the following section.

3 Algorithm

As discussed in Section 2 we can uniquely solve many important problems from
data and image processing in a unified manner. For this we simply have to
efficiently minimize an associated TV denoising energy on graphs. As the ROF
problem in (14) is well-studied in the literature there exist various ways how
to solve it. In this work we use the Chambolle-Pock (CP) primal-dual method
proposed in 7] to minimize (14) since it connects different efficient minimization
algorithms from the literature. Let U,V be finite-dimensional real vector spaces
equipped with an inner product (-,-) and norm || - || = (-,-)!/2. The CP method
is designed to minimize convex problems of the form:

min D(u) + R(Ku) , (16)

uelU
where in this setting K: U — V is a linear operator and D, R are convex, lower-
semicon-tinuous functions. The problem in (16) is associated with a saddle-point
problem given by:

i K D(u) — R* 1
min max (Ku,v) + D(u) — B*(v) (17)

where R* is the conjugate of R. To solve the saddle-point problem (17) the
authors propose the following general iterative minimization scheme:

V"t = prox, p. (V" + o Ku") (18a)
u" ™t = prox, p(u" — TK*v" ) (18b)
"t =" 4 g — ™) (18c¢)

In this context K* denotes the adjoint operator of K, prox is the proximal
operator with:

prox,(z) = argmin,cx ||y — z|[% + f(y)

and o, 7,60 > 0 are step size parameters. The convergence of the CP algorithm in
(18) is guaranteed for = 1 and o7||K||? < 1. Since the ROF problem is strictly
convex, using a modified version of the CP algorithm in [7] yields a convergence
rate of O(1/N?).
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One is able to use the primal-dual CP algorithm on graphs in the setting
of the minimization problem (14) if one chooses: K = V, D = )||. — f||3, and
R = ||.||z- In this setting it is reasonable to use the dual formulation of the
discrete TV seminorms introduced in Section 2.1:

l[ullry = IEHD%) Z Vu(zi)v(z;) = TEHD%) - Z u(;) divy v(z;) 5 (19)
v v
[[0]]c0 <1 i€V [[0]]ee<1 Ti€V

for which D(£) is the Hilbert space of vertex functions v: ¥V — RY and div,,
is the divergence operator given by the negative adjoint operator —dy, in (4).
Note that the condition ||v]|ec = maxg,ey ||v(zi)||q < 1 is based on the dual
norm of the inner norm ||.||, in (2) which fulfills the Holder conjugate condition,
ie., % + % = 1,1 < p,q < oo for which ¢ = oo is the Holder conjugate of
p = 1 and vice versa. Following [7], one is able to show that the conjugate of a
norm can be represented as the indicator function of its dual norm unit ball, i.e.,
I[.I* = x||.||.<1- Furthermore, the proximal operator of a indicator function of a
convex set is the respective projection onto this set, i.e., prox, () = proj(z).
In case of the discrete total variation seminorms in (7) and vertex functions
u,u € H(V) and v € D(V) the application of the CP primal-dual algorithm for
the problem (14) thus leads to the following minimization scheme on graphs:

n a7
it "+ oV,

= 20
max(L, [0 + oV @"||) (202)
ntl _ u™ 4 7(div, v + A f) 20b
v AT+ 1 ( )
gt o= um gt — ) (20c)

with the initialization «° = @ = f and v* = 0.

In case of the novel discrete upwind total variation seminorms in (8) the CP
algorithm is not directly applicable, since the upwind gradient operators V.
and V_, are not linear. Following [6], one can deal with this problem by adding
an additional constraint to the dual formulation of the discrete upwind total
variation seminorms as follows:

ul 5y = max Z Viu(z)v(z;) = Ugg(}\(}) —Z w(z;) divy, v(x;) ,  (21)
[[0]]oo <12 EV [[v]]e<1 Ti€V

viZO

and analogously the condition v; < 0 for the discrete upwind TV seminorm
| - [|7 - By this the convex set of possible minimizers of the dual minimization
step gets restricted by an additional constraint and thus we have to adapt the
projection step in (20a) of the deduced minimization scheme:

il max(0,v" + oV, u")

ST max(l Jmax(0, 0" + oV, m)l,) |
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for the case of the discrete upwind TV seminorm || - ||J:FV and for the case of
|| - ||7v one derives:

o min(0,v" + oV, ")
= (L, [lmin(0, 0" + 0Vai)lly)

Finally, in the case of the discrete total variation seminorm |||\$VDQ in (9) one
has the following projection step:
ntl _ max(0,v"™ + oV, u") + min(0,v" + oV, u")

max (2, || max(0,v™ + oV, u™)||1 + || min(0, v™ + oV, u")||1)

v

The alternating minimization scheme (20a) is terminated after the relative
change of the primal variable u falls under a certain accuracy, e.g., € < 107°.
To finally obtain a solution of the minimal surface problem (12) one simply
computes the indicator function x4 = 1 for a(z;) > z for all z; € V and 0 else.
Note that the computed solution @ in fact gives a whole family of solutions of
(12) since its respective level sets are minimal surface solutions for the respective
value of z [5]. This is in particular intersting, as it allows to adapt the computed
solution in real time, e.g., by changing the threshold value with a slider [18].

4 Results

In the following we demonstrate the universal applicability of our approach by
illustrating applications from filtering and segmentation of arbitrary point cloud
data. It gets clear that the proposed algorithm in Section 3 is applicable for any
weighted graph and hence for a huge range of possible data, e.g., for images and
meshes [11, 14]. For the sake of brevity we discuss only the most complex case of
arbitrary 3D point cloud data, which we took from [15]. We connect the neigh-
borhoods of vertices using a symmetric k-nearest-neighbour (kNN) approach as
described in [14]. Subsequently, we estimate the normal of the induced surface
(if it is not given) in each vertex. We utilize this normal to determine an unique
orientation of a patch within the tangent plane. By this we are able to average
the signal values of the respective vertices which are projected into the patch
cells. We compute the weight function of our graph based on the patch distance.

4.1 Filtering

For color filtering 3D point cloud data we simply solve the ROF denoising prob-
lem (14) for each color channel and thus filter the colors of the 3D points. In
Figure 1 we projected a synthetic texture showing a strip pattern onto a 3D
scanned vase. Subsequently, we added for each color channel Gaussian noise
with mean p = 0 and standard deviation ¢ = 40 as shown in Figure la. We
keep the regularization parameter fixed as A = % and use the isotropic (p = 2)
discrete TV seminorm (7) to filter each color channel of the data. In this ex-

periment we illustrate the impact of the graph construction by building a local
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1

(a) Noisy data (b) Local (c) Local (d) NL

filtering (600 filtering (1200  filtering (1200
iterations) iterations) iterations)

Fig. 1: Results of local and nonlocal (NL) color filtering on a 3D point cloud

graph with a constant weight function and a nonlocal graph with a high value
of k and a weight function based on the patch distance as described in [14].
Figures 1b and 1c show the result of local filtering the point cloud data for 600
and 1200 iterations, respectively. Clearly, it is unavoidable to blur the texture
in order to suppress the impact of noise on the whole data. However, construct-
ing a nonlocal graph enables us to remove the noise from the background while
preserving the texture. The second application of the proposed algorithm is ge-
ometric filtering of 3D point cloud data. Figure 2a shows a scanned human face
with lots of misplaced points, which can be interpreted as geometric noise. We
use the same parameters as above but instead of the color information of each
vertex we filter their geometric coordinates as described in [14]. We compare
the results of TV denoising using the normal and the newly proposed family of
discrete TV seminorms based on the upwind gradient in (8) in Figures 2b and
2c, respectively. Although the effect is only small, one can see that the upwind
gradient gives smoother surfaces without loosing too much details of the face.

4.2 Segmentation

Finally, we perform segmentation of 3D point cloud data based on different
features by using the Chan-Vese segmentation approach in [8] as discussed in
Section 1.1. On the first data set of a scanned vase in Figure 3a we add several
elliptic forms with a strip texture. We use the local standard deviation within
the estimated patches as a scalar descriptor to perform binary segmentation of
the surface. By using the grayscale values of the vertices directly we would not
get the wanted segmentation result, as the background intensity lies between the
grayscale values of the texture. In Figure 3b we show results for a mug surface
with an color image of flowers after binary segmentation of the red color channel.
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P, TR

= *
=
(a) Point cloud data (b) Geometric filtering (c) Geometric filtering
with normal gradient with upwind gradient

Fig. 2: Geometric filtering on 3D point cloud data

(a) Texture descriptor (b) Color information

Fig. 3: Segmentation of two 3D point clouds using different features

5 Discussion

In this work we investigated an approach of solving minimal surface problems
for arbitrary surfaces such as meshes and point cloud data via an relatively sim-
ple approach using graph-based representations. By approximating differential
operators by weighted finite differences we were able to formulate the mini-
mal surface problem on graphs. Furthermore, we introduced a novel family of
discrete total variation seminorms based on the upwind gradient in this con-
text. To uniquely solve minimal surface problems on graphs we transfered the
Chambolle-Pock minimization algorithm to this domain. The importance and
universal applicability of this approach is illustrated by applications from filter-
ing and segmentation of point cloud data. In future work we would like to extend
the range of applications to data clustering and mean curvature flow on graphs.
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